留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解三维Wilson元离散化线性系统的PCG方法

肖映雄 李真有

肖映雄, 李真有. 求解三维Wilson元离散化线性系统的PCG方法[J]. 应用数学和力学, 2016, 37(8): 820-831. doi: 10.21656/1000-0887.370037
引用本文: 肖映雄, 李真有. 求解三维Wilson元离散化线性系统的PCG方法[J]. 应用数学和力学, 2016, 37(8): 820-831. doi: 10.21656/1000-0887.370037
XIAO Ying-xiong, LI Zhen-you. Preconditioned Conjugate Gradient Methods for the 3D Wilson Nonconforming FEM Discretizations[J]. Applied Mathematics and Mechanics, 2016, 37(8): 820-831. doi: 10.21656/1000-0887.370037
Citation: XIAO Ying-xiong, LI Zhen-you. Preconditioned Conjugate Gradient Methods for the 3D Wilson Nonconforming FEM Discretizations[J]. Applied Mathematics and Mechanics, 2016, 37(8): 820-831. doi: 10.21656/1000-0887.370037

求解三维Wilson元离散化线性系统的PCG方法

doi: 10.21656/1000-0887.370037
基金项目: 国家自然科学基金(10972191);湖南省自然科学基金(14JJ2063);湖南省教育厅资助科研项目(15A183)
详细信息
    作者简介:

    肖映雄(1970—),男,教授,博士(通讯作者. E-mail: xyx610xyx@xtu.edu.cn);李真有(1988—),男,硕士生(E-mail: 294056690@qq.com).

  • 中图分类号: O343.3; TB115

Preconditioned Conjugate Gradient Methods for the 3D Wilson Nonconforming FEM Discretizations

Funds: The National Natural Science Foundation of China(10972191)
  • 摘要: 非协调元方法是克服三维弹性问题体积闭锁的一种有效方法,它具有自由度少、精度高等优点,但要提高其有限元分析的整体效率还必须为相应的离散化系统设计快速求解算法.考虑了Wilson元离散化系统的快速求解.当Poisson(泊松)比ν→0.5时,该离散系统为一高度病态的正定方程组,预处理共轭梯度(PCG)法是求解这类方程组最为有效的方法之一.另外,在实际应用中,由于结构的特殊性,网格剖分时常常会产生具有大长宽比的各向异性网格,这也将大大影响PCG法的收敛性.该文设计了一种基于“距离矩阵”的代数多重网格(DAMG)法的PCG法,并应用于近不可压缩问题Wilson元离散系统的求解.这种基于“距离矩阵”的代数多重网格法,能更有效地求解各向异性网格问题,再结合有效的磨光算子,相应的PCG法对求解近不可压缩问题具有很好的鲁棒性(robustness)和高效性.
  • [1] Morley M. A family of mixed finite elements for linear elasticity[J].Numerische Mathematik,1989,55(6): 633-666.
    [2] Falk R S. Nonconforming finite element methods for the equations of linear elasticity[J].Mathematics of Computation,1991,57(196): 529-550.
    [3] QI He, WANG Lie-heng, ZHENG Wei-ying. On locking-free finite element schemes for three dimensional elasticity[J].Journal of Computational Mathematics,2005,23(1): 101-112.
    [4] Brenner S C. A nonconforming mixed multigrid method for the pure traction problem in planar linear elasticity[J].Mathematics of Computation,1994,63(208): 435-460.
    [5] Scott L R, Vogelius M. Conforming finite element methods for incompressible and nearly incompressible continua[C]//Large Scale Computations in Fluid Mechanics,Part 2, 1983: 221-244.
    [6] Hackbusch W.Multi-Grid Methods and Applications [M]. New York: Springer-Verlag, 1985.
    [7] Trottenberg U, Oosterlee C W, Schuler A.Multigrid[M]. Academic Press, 2001.
    [8] 刘石, 陈德祥, 冯永新, 徐自力, 郑李坤. 等几何分析的多重网格共轭梯度法[J]. 应用数学和力学,2014,35(6): 630-639.(LIU Shi, CHEN De-xiang, FENG Yong-xin, XU Zi-li, ZHENG Li-kun. A multigrid preconditioned conjugate gradient method for isogeometric analysis[J].Applied Mathematics and Mechanics,2014,35(6): 630-639.(in Chinese))
    [9] CHEN Zhang-xin, Oswald P. Multigrid and multilevel methods for nonconforming Q1 element[J].Mathematics of Computation,1998,67(222): 667-693.
    [10] 周叔子, 文承标. 抛物问题非协调元多重网格法[J]. 计算数学, 1994,16(4): 372-381.(ZHOU Shu-zi, WEN Cheng-biao. Nonconforming element multigrid method for parabolic equations[J].Mathematica Numerica Sinica,1994,16(4): 372-381.(in Chinese))
    [11] 许学军. 旋转Q1非协调元的V循环多重网格法[J] . 计算数学,1999,21(2): 251-256.(XU Xue-jun. V-cycle multigrid methods for Q1 nonconforming finite elements[J].Mathematica Numerica Sinica,1999,21(2): 251-256.(in Chinese))
    [12] SHI Zhong-ci, XU Xue-jun. V-cycle multigrid methods for Wilson nonconforming element[J].Science in China(Series A): Mathematics,2000,43(7): 673-684.
    [13] Chartier T P, Falgout R D, Henson V E, Jones J E, Maneuffel T, McCormick S F, Ruge J W, Vassilevski P S. Spectral AMGe(ρAMGe)[J].SIAM Journal on Scientific Computing,2003,20(1): 1-20.
    [14] Brezina M, Cleary A J, Falgout R D, Henson V E, Jones J E, Manteuffel T A, McCormick S F, Ruge J W. Algebraic multigrid based on element interpolation (AMGe)[J].SIAM Journal on Scientific Computing,2000,22(5): 1570-1592.
    [15] Kolev T V, Vassilevski P S. AMG by element agglomeration and constrained energy minimization interpolation[J].Numerical Linear Algebra With Applications,2006,13(9): 771-788.
    [16] XIAO Ying-xiong, SHU Shi, ZHANG Ping, TAN Min. An algebraic multigrid method for isotropic linear elasticity on anisotropic meshes[J].International Journal for Numerical Methods in Biomedical Engineering,2010,26(5): 534-553.
    [17] El maliki A, Guénette R, Fortin M. An efficient hierarchical preconditioner for quadratic discretizations of finite element problems[J].Numerical Linear Algebra With Applications,2011,18(5): 789-803.
    [18] XIAO Ying-xiong, SHU Shi, ZHAO Tu-yan. A geometric-based algebraic multigrid for higher-order finite element equations in two dimensional linear elasticity[J].Numerical Linear Algebra With Applications,2009,16(7): 535-559.
    [19] Saad Y.Iterative Methods for Sparse Linear Systems[M]. 2nd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2003.
    [20] Notay Y. An aggregation-based algebraic multigrid method[J].Institute of Computational Mathematics,2010,37: 123-146.
  • 加载中
计量
  • 文章访问数:  900
  • HTML全文浏览量:  85
  • PDF下载量:  542
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-25
  • 修回日期:  2016-03-16
  • 刊出日期:  2016-08-15

目录

    /

    返回文章
    返回