留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三叶片垂直轴水轮机结构动力响应分析

张鹏坤 李晔

张鹏坤, 李晔. 三叶片垂直轴水轮机结构动力响应分析[J]. 应用数学和力学, 2017, 38(6): 663-675. doi: 10.21656/1000-0887.370267
引用本文: 张鹏坤, 李晔. 三叶片垂直轴水轮机结构动力响应分析[J]. 应用数学和力学, 2017, 38(6): 663-675. doi: 10.21656/1000-0887.370267
ZHANG Peng-kun, LI Ye. Investigation on Structural Dynamic Responses of Vertical-Axis Tidal Current Turbines[J]. Applied Mathematics and Mechanics, 2017, 38(6): 663-675. doi: 10.21656/1000-0887.370267
Citation: ZHANG Peng-kun, LI Ye. Investigation on Structural Dynamic Responses of Vertical-Axis Tidal Current Turbines[J]. Applied Mathematics and Mechanics, 2017, 38(6): 663-675. doi: 10.21656/1000-0887.370267

三叶片垂直轴水轮机结构动力响应分析

doi: 10.21656/1000-0887.370267
详细信息
    作者简介:

    张鹏坤(1991—),男,硕士 (E-mail: pengkunzhang2014@sjtu.edu.cn);李晔(1977—),男,教授,博士生导师(通讯作者. E-mail: ye.li@sjtu.edu.cn).

  • 中图分类号: U661

Investigation on Structural Dynamic Responses of Vertical-Axis Tidal Current Turbines

  • 摘要: 提出采用改进离散涡和几何精确梁理论混合方法对三叶片垂直轴水轮机进行结构动力响应分析.相比传统的有限元方法,该方法具有求解速度快、建模简单、计算精确等优点.在模态分析中,计算了不同叶片高度下,水轮机叶片和整体的前五阶固有频率,分析了水轮机半径大小和叶片高度对固有频率的影响,结果显示:随着尺寸的增加,叶片和整体固有频率显著减小,整体固有频率更易受到半径大小的影响.在瞬态分析中,考虑了离心载荷和叶片的水动力载荷,得到在工作状况下,旋转一周过程中叶片的最大变形曲线;分析了在不同H/R(叶片高度和半径的比值)的情况下的叶片强度问题,结果显示:当H/R大于3.0时,叶片强度将会失效.
  • [1] Pelc R, Fujita R M. Renewable energy from the ocean[J]. Marine Policy,2002,26(6): 471-479.
    [2] Twidell J, Weir T. Renewable Energy Resources [M]. Routledge, 2015.
    [3] Cory K S, Swezey B G. Renewable portfolio standards in the states: balancing goals and implementation strategies[R]. National Renewable Energy Laboratory, 2007.
    [4] Fraenkel P L. Tidal current energy technologies[J]. Ibis,2006,148(S1): 145-151.
    [5] Lang C. Harnessing tidal energy takes new turn[J]. IEEE Spectrum,2003,40(9): 13.
    [6] LI Ye, Calisal S M. Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine[J]. Renewable Energy,2010,35(10): 2325-2334.
    [7] LI Ye, Calisal S M. A discrete vortex method for simulating a stand-alone tidal-current turbine: modeling and validation[J]. Journal of Offshore Mechanics and Arctic Engineering,2010,132(3): 031102. doi: 10.1115/1.4000499.
    [8] Bahaj A S, Batten W M J, McCann G. Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines[J]. Renewable Energy,2007,32(15): 2479-2490.
    [9] Batten W M J, Bahaj A S, Molland A F, et al. Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines[J]. Ocean Engineering,2007,34(7): 1013-1020.
    [10] Calcagno G, Salvatore F, Greco L, et al. Experimental and numerical investigation of an innovative technology for marine current exploitation: the Kobold turbine[C]// The Sixteenth International Offshore and Polar Engineering Conference.San Francisco, California, USA: International Society of Offshore and Polar Engineers, 2006.
    [11] Ponta F L, Jacovkis P M. A vortex model for Darrieus turbine using finite element techniques[J]. Renewable Energy,2001,24(1): 1-18.
    [12] Young Y L, Motley M R, Yeung R W. Three-dimensional numerical modeling of the transient fluid-structural interaction response of tidal turbines[J]. Journal of Offshore Mechanics and Arctic Engineering,2010,132(1): 011101. doi: 10.1115/1.3160536.
    [13] 康海贵, 郭伟. 竖轴水轮机三维水动力响应的数值模拟[J]. 太阳能学报, 2013,34(3): 537-541. (KANG Hai-gui, GUO Wei. Three dimensional numerical simulation for hydrodynamic response of vertical axis tidal current turbine[J]. Acta Energiae Solaris Sinica,2013,34(3): 537-541. (in Chinese))
    [14] 张亮, 王树齐, 马勇, 等. 潮流能水平轴叶轮纵摇运动水动力分析[J]. 哈尔滨工程大学学报, 2015,36(3): 307-311. (ZHANG Liang, WANG Shu-qi, MA Yong, et al. The pitch hydrodynamic analysis of tidal current energy horizontal axis impller[J]. Journal of Harbin Engineering University,2015,36(3): 307-311. (in Chinese))
    [15] YU Wen-bin, Blair M. GEBT: a general-purpose nonlinear analysis tool for composite beams[J]. Composite Structures,2012,94(9): 2677-2689.
    [16] WANG Qi, YU Wen-bin, Sprague M A. Geometric nonlinear analysis of composite beams using Wiener-Milenkovic parameters[C]//Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Co-Located Events . Boston, Massachusetts, 2013: 8-11.
    [17] Hodges D H. Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams[J]. AIAA Journal,2003,41(6): 1131-1137.
    [18] LI Ye, Calisal S M. Preliminary results of a vortex method for stand-alone vertical axis marine current turbine[C]// The 26th ASME International Conference on Offshore Mechanics and Arctic Engineering.San Diego, California, USA, 2007.
    [19] Reissner E. On one-dimensional large-displacement finite-strain beam theory[J]. Studies in Applied Mathematics,1973,52(2): 87-95.
    [20] YU Wen-bin. Manual of GEBT[Z/OL]. 2011. [2017-05-15]. https://zh.scribd.com/document/288507720/GEBT-Manual.
    [21] Danielson D A, Hodges D H. Nonlinear beam kinematics by decomposition of the rotation tensor[J]. Journal of Applied Mechanics,1987,54(2): 258-262.
    [22] Berdichevskiǐ V L. Variational-asymptotic method of constructing a theory of shells: PMM vol 43, no 4, 1979, pp 664-687[J]. Journal of Applied Mathematics and Mechanics,1979,43(4): 711-736.
    [23] YU Wen-bin. Variational asymptotic modeling of composite dimensionally reducible structures[D]. PhD Thesis. Atlanta: Georgia Institute of Technology, 2002.
    [24] YU Wen-bin, Hodges D H, Ho J C. Variational asymptotic beam sectional analysis—an updated version[J]. International Journal of Engineering Science,2012,59: 40-64.
    [25] Cesnik C E S, Hodges D H. VABS: a new concept for composite rotor blade cross-sectional modeling[J]. Journal of the American Helicopter Society,1997,42(1): 27-38.
    [26] Hodges D H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J]. International Journal of Solids and Structures,1990,26(11): 1253-1273.
    [27] Hodges D H. Nonlinear Composite Beam Theory [M]. Lu F K. Progress in Astronautics and Aaeronautics,Vol 213. Reston, Virginia: American Institute of Aeronautics and Astronautics Inc, 2006: 304.
    [28] 冯康,沦间断有限元的理论,计算数学,1,4(1979)378-385.
    [29] YU Wen-bin, Hodges D H. Generalized Timoshenko theory of the variational asymptotic beam sectional analysis[J]. Journal of the American Helicopter Society,2005,50(1): 46-55.
    [30] Rosenhead L. The formation of vortices from a surface of discontinuity[J]. Proceedings of the Royal Society of London(Series A): Containing Papers of a Mathematical and Physical Character,1931,134(823): 170-192.
    [31] Wong H L. Slender ship procedures that include the effects of yaw, vortex shedding and density stratification[D]. PhD Thesis. Vancouver: University of British Columbia, 1994.
  • 加载中
计量
  • 文章访问数:  974
  • HTML全文浏览量:  153
  • PDF下载量:  890
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-01
  • 修回日期:  2017-05-09
  • 刊出日期:  2017-06-15

目录

    /

    返回文章
    返回