留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维可压缩Boltzmann模型及其在低Mach数湍流中的应用

国岛雄一 梶岛岳夫

国岛雄一, 梶岛岳夫. 三维可压缩Boltzmann模型及其在低Mach数湍流中的应用[J]. 应用数学和力学, 2016, 37(12): 1296-1307. doi: 10.21656/1000-0887.370556
引用本文: 国岛雄一, 梶岛岳夫. 三维可压缩Boltzmann模型及其在低Mach数湍流中的应用[J]. 应用数学和力学, 2016, 37(12): 1296-1307. doi: 10.21656/1000-0887.370556
KUNISHIMA Yuichi, KAJISHIMA Takeo. D Compressible Lattice Boltzmann Model and Its Appliaction to Low Mach Number Turbulent Flow[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1296-1307. doi: 10.21656/1000-0887.370556
Citation: KUNISHIMA Yuichi, KAJISHIMA Takeo. D Compressible Lattice Boltzmann Model and Its Appliaction to Low Mach Number Turbulent Flow[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1296-1307. doi: 10.21656/1000-0887.370556

三维可压缩Boltzmann模型及其在低Mach数湍流中的应用

doi: 10.21656/1000-0887.370556
详细信息
    作者简介:

    国岛雄一,E-mail: kunishima@fluid.mech.eng.osaka

  • 中图分类号: O35; O422

D Compressible Lattice Boltzmann Model and Its Appliaction to Low Mach Number Turbulent Flow

  • 摘要: 改进了有限差分格子Boltzmann方法(FDLBM),以直接数值模拟气动噪声.基于LB求解器特性,采用动力学方程中的恒定对流速度以实施高阶迎风差分,提高了声波和湍流的分辨率.通过建立一个新的三维粒子模型,计算得到了任意比热容的三维可压缩Navier-Stokes系统.此外,利用Bhatnagar-Gross-Krook(BGK)碰撞算子,通过引入热流量修正,实现了Prandtl数的可变性.在激波管内弱声波以及伴随有温度梯度的Taylor-Couette层流的验证计算中,提出的新方法结果良好.此外也对NACA0012翼型绕流进行了三维模拟.其中,Reynolds数、Mach数和攻角分别取2×105,8.75×10-2以及9°.计算发现,在机翼前缘附近的分离气流位置,以及表面压力波动强度的Mach数依赖性方面,数值计算结果与实验结果相吻合.
  • [1] CAO Nian-zheng, CHEN Shi-yi, JIN Shi, Martínez D. Physical symmetry and lattice symmetry in the lattice Boltzmann method[J]. Physical Review E,1997,55(1): R21-R24.
    [2] Kunishima Y, Kajishima T, Tsutahara M. Higher-order non-linear scheme of finite-difference lattice Boltzmann method (evaluation by direct numerical simulation of turbulent channel flow)[J]. Transactions of the JSME,2016,82(840): 16-00204. doi: 10.1299/transjsme.16-00204. (in Japanese)
    [3] Tsutahara M, Kataoka T, Shikata K, Takada N. New model and scheme for compressible fluids of the finite difference lattice Boltzmann method and direct simulations of aerodynamic sound[J]. Computers & Fluids,2008,37(1): 79-89.
    [4] Kataoka T, Tsutahara M. Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio[J]. Physical Review E,2004,69(3): 035701. doi: 10.1103/PhysRevE.69.035701.
    [5] XU Kun. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method[J]. Journal of Computational Physics,2001,171(1): 289-335.
    [6] Tam C K W, JU Hong-bin. Aerofoil tones at moderate Reynolds number[J]. Journal of Fluid Mechanics,2012,690: 536-570.
    [7] Miyazawa M, Kato C, Suzuki Y, Takaishi T. Aeroacoustic simulation of a flow around a 2-D aerofoil (1st report, validation of a large eddy simulation of separated and transitional flow around an aerofoil)[J]. Transactions of the Japan Society of Mechanical Engineers (Series B),2006,72(721): 2140-2147. (in Japanese)
    [8] Tsutahara M, Kurita M, Iwagami T. A study of new finite difference lattice Boltzmann model[J]. Transactions of the Japan Society of Mechanical Engineers (Series B),2002,68(665): 15-21.
    [9] Tamura A, Okuyama K, Takahashi S, Ohtsuka M. Three-dimensional discrete-velocity BGK model for the incompressible Navier-Stokes equations[J]. Computers & Fluids,2011,40(1): 149-155.
    [10] Suzuki H, Nagata K, Sakai Y, Hayase T, Hasegawa Y, Ushijima T. An attempt to improve accuracy of higher-order statistics and spectra in direct numerical simulation of incompressible wall turbulence by using the compact schemes for viscous terms[J]. International Journal for Numerical Methods in Fluids,2013,73(6): 509-522.
    [11] Ketcheson D I. Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations[J]. SIAM Journal on Scientific Computing,2008,30(4): 2113-2136.
    [12] Tamura A, Tsutahara M. Simulation of flows and acoustic field around moving body by ALE formulation in finite difference lattice Boltzmann method[J]. Journal of Environment and Engineering,2007,2(3): 458-469.
    [13] Han C, Kajishima T. Large eddy simulation of weakly compressible turbulent flow around an airfoil[J]. Journal of Fluid Science and Technology,2014,9(4): JFST0063. doi: 10.1299/jfst.2014jfst0063.
  • 加载中
计量
  • 文章访问数:  630
  • HTML全文浏览量:  46
  • PDF下载量:  766
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-08
  • 修回日期:  2016-11-28
  • 刊出日期:  2016-12-15

目录

    /

    返回文章
    返回