留言板

 引用本文: 黄应全. 关于向量值D-半预不变真拟凸映射的刻画[J]. 应用数学和力学, 2018, 39(3): 364-370.
HUANG Yingquan. Characterizations of D-Properly Semi-Prequasi-Invex Mappings[J]. Applied Mathematics and Mechanics, 2018, 39(3): 364-370. doi: 10.21656/1000-0887.380269
 Citation: HUANG Yingquan. Characterizations of D-Properly Semi-Prequasi-Invex Mappings[J]. Applied Mathematics and Mechanics, 2018, 39(3): 364-370.

关于向量值D-半预不变真拟凸映射的刻画

doi: 10.21656/1000-0887.380269

作者简介:黄应全(1973—)，男，讲师，硕士(E-mail: huangyq1110@ctbu.edu.cn).
• 中图分类号: O221.6

Characterizations of D-Properly Semi-Prequasi-Invex Mappings

Funds: The National Natural Science Foundation of China(11471059；11626048；11701057)
• 摘要: 研究了D-半预不变真拟凸映射的性质.首先，举例验证了满足条件E的η是大量存在的.然后，说明了D-半预不变真拟凸映射的水平集是半不变凸集，并运用D-上半连续性、*-上半连续性和中间点的D-半预不变真拟凸性，给出了D-半预不变真拟凸映射的两个等价刻画.最后，在中间点D-严格半预不变真拟凸性条件下，建立了D-半严格半预不变真拟凸映射和D-严格半预不变真拟凸映射的等价关系.
•  [1] HANSON M A. On sufficiency of the Kuhn-Tucker conditions[J]. Journal of Mathematical Analysis and Applications,1981,80(2): 545-550. [2] WEIR T, MOND B. Pre-invex functions in multiple objective optimization[J]. Journal of Mathematical Analysis and Applications,1988,136(1): 29-38. [3] WEIR T, JEYAKUMAR V. A class of nonconvex functions and mathematical programming[J]. Bulletin of the Australian Mathematical Society,1988,38(2): 177-189. [4] YANG Xinmin, LI Duan. On properties of preinvex functions[J]. Journal of Mathematical Analysis and Applications,2001,256(1): 229-241. [5] YANG Xinmin, LI Duan. Semistrictly preinvex functions[J]. Journal of Mathematical Analysis and Applications,2001,258(1): 287-308. [6] YANG Xiaoqi, CHEN Guangya. A class of nonconvex functions and pre-variational inequalities[J]. Journal of Mathematical Analysis and Applications,1992,169(2): 359-373. [7] 彭建文. 向量值映射D-η-预不变真拟凸的性质[J]. 系统科学与数学, 2003,23(3): 306-314.(PENG Jianwen. Properties of D-η-properly prequasiinvex function[J]. Journal of Systems Science and Mathematical Sciences,2003,23(3): 306-314.(in Chinese)) [8] 彭再云, 王堃颍, 赵勇, 等. D-η-半预不变凸映射的性质与应用[J]. 应用数学和力学, 2014,35(2): 202-211.(PENG Zaiyun, WANG Kunying, ZHAO Yong, et al. Characterizations and applications of D-η-semipreinvex mappings[J]. Applied Mathematics and Mechanics,2014,35(2): 202-211.(in Chinese)) [9] 彭再云, 李科科, 唐平, 等. 向量值D-半预不变真拟凸映射的判定和性质[J]. 重庆师范大学学报(自然科学版), 2014,31(5): 18-25.(PENG Zaiyun, LI Keke, TANG Ping, et al. Characterizations and criterions of D-semiprequasi-invex mappings[J]. Journal of Chongqing Normal University (Natural Science),2014,31(5): 18-25.(in Chinese)) [10] 唐莉萍, 杨新民. 关于D-半预不变凸性的某些新性质[J]. 应用数学和力学, 2015,36(3): 325-331.(TANG Liping, YANG Xinmin. A note on some new characterizations of D-〖KG-*4〗semi-preinvexity[J]. Applied Mathematics and Mechanics,2015,36(3): 325-331.(in Chinese)) [11] 杨新民, 戎卫东. 广义凸性及其应用[M]. 北京: 科学出版社, 2016.(YANG Xinmin, RONG Weidong. Generalized Convexity and Its Applications [M]. Beijing: Science Press, 2016.(in Chinese)) [12] 彭建文. 广义凸性及其在最优化问题中的应用[D]. 博士学位论文. 呼和浩特: 内蒙古大学, 2005.(PENG Jianwen. Generalized convexity with applications in optimization problems[D]. PhD Thesis. Hohhot: Inner Mongolia University, 2005.(in Chinese)) [13] 彭再云, 李科科, 张石生.D-η-E-半预不变凸映射与向量优化[J]. 应用数学和力学, 2014,35(9): 1020-1032.(PENG Zaiyun, LI Keke, ZHANG Shisheng. D-η-E-semipreinvex vector mappings and vector optimization[J]. Applied Mathematics and Mechanics,2014,35(9): 1020-1032.(in Chinese)) [14] ity of fractional order Hopfield neural networks[J]. Nonlinear Analysis: Hybrid Systems,2015,16(2): 104-121.

计量
• 文章访问数:  730
• HTML全文浏览量:  63
• PDF下载量:  450
• 被引次数: 0
出版历程
• 收稿日期:  2017-10-11
• 修回日期:  2017-11-07
• 刊出日期:  2018-03-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈