留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于联系云-证据理论的岩爆烈度预测模型

汪明武 董昊 叶晖 周天龙 金菊良

汪明武, 董昊, 叶晖, 周天龙, 金菊良. 基于联系云-证据理论的岩爆烈度预测模型[J]. 应用数学和力学, 2018, 39(9): 1021-1029. doi: 10.21656/1000-0887.380286
引用本文: 汪明武, 董昊, 叶晖, 周天龙, 金菊良. 基于联系云-证据理论的岩爆烈度预测模型[J]. 应用数学和力学, 2018, 39(9): 1021-1029. doi: 10.21656/1000-0887.380286
WANG Mingwu, DONG Hao, YE Hui, ZHOU Tianlong, JIN Juliang. A Connection Cloud-Evidence Theory Coupling Model for Prediction of Rockburst Intensity[J]. Applied Mathematics and Mechanics, 2018, 39(9): 1021-1029. doi: 10.21656/1000-0887.380286
Citation: WANG Mingwu, DONG Hao, YE Hui, ZHOU Tianlong, JIN Juliang. A Connection Cloud-Evidence Theory Coupling Model for Prediction of Rockburst Intensity[J]. Applied Mathematics and Mechanics, 2018, 39(9): 1021-1029. doi: 10.21656/1000-0887.380286

基于联系云-证据理论的岩爆烈度预测模型

doi: 10.21656/1000-0887.380286
基金项目: 国家重点研发计划(2016YFC0401303);国家自然科学基金(41172274;51579059)
详细信息
    作者简介:

    汪明武(1972—),男,教授,博士,博士生导师(通讯作者. E-mail: wanglab307@foxmail.com).

  • 中图分类号: TU457

A Connection Cloud-Evidence Theory Coupling Model for Prediction of Rockburst Intensity

Funds: The National Key R&D Plan(2016YFC0401303); The National Natural Science Foundation of China(41172274; 51579059)
  • 摘要: 岩爆机理复杂影响因素众多且呈现多种不确定性,应用云模型预测岩爆问题虽能刻画指标的随机性和模糊性,但很难模拟非正态分布的评价指标及存在冲突数据融合失真问题.为克服这些缺陷,探讨了岩爆烈度的联系云-证据预测模型.该模型首先基于联系数定量表达评价指标,通过联系云构建评价矩阵,并应用D-S证据理论得到基本概率赋值,进而基于距离函数的组合权重与融合均值证据预测样本的岩爆等级.实例应用及与其他方法对比结果表明, 该模型应用于岩爆预测是有效可行的, 且克服了传统云模型和证据理论的不足, 为岩爆烈度分级预测提供了一种新的途径.
  • [1] 许迎年, 徐文胜, 王元汉, 等. 岩爆模拟试验及岩爆机制研究[J]. 岩石力学与工程学报, 2002,21(10): 1462-1466.(XU Yingnian, XU Wensheng, WANG Yuanhan, et al. Simulation testing and mechanism studies on rockburst[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(10): 1462-1466.(in Chinese))
    [2] 苏国韶, 张小飞, 燕柳斌. 基于案例推理的岩爆预测方法[J]. 采矿与安全工程学报, 2008,25(1): 63-67.(SU Guoshao, ZHANG Xiaofei, YAN Liubin. Rockburst prediction method based on case reasoning pattern recognition[J]. Journal of Mining and Safety Engineering,2008,25(1): 63-67.(in Chinese))
    [3] 王迎超, 尚岳全, 孙红月, 等. 基于功效系数法的岩爆烈度分级预测研究[J]. 岩土力学, 2010,31(2): 529-534.(WANG Yingchao, SHANG Yuequan, SUN Hongyue, et al. Study of prediction of rockburst intensity based on efficacy coefficient method[J]. Rock and Soil Mechanics ,2010,31(2): 529-534.(in Chinese))
    [4] 汪明武, 李丽, 金菊良. 岩爆预测的改进集对分析模型[J]. 岩土力学, 2008,28(S1): 511-518.(WANG Mingwu, LI Li, JIN Juliang. An improved set pair analysis model for the prediction of rockburst[J]. Rock and Soil Mechanics,2008,28(S1): 511-518.(in Chinese))
    [5] 陈祥, 祈小博, 蔡新滨, 等. 可拓综合评价方法在岩爆判别中的应用[J]. 北京交通大学学报, 2009,33(1): 99-108.(CHEN Xiang, QI Xiaobo, CAI Xinbin, et al. Extensional evaluation method and its application in the judgments of rockburst[J]. Journal of Beijing Jiaotong University,2009,33(1): 99-108.(in Chinese))
    [6] 罗磊, 曹平. 深部巷道岩爆加权距离判别法模型的分析和应用[J]. 中南大学学报(自然科学版), 2012,43(10): 222-226.(LUO Lei, CAO Ping. Model of weighted distance discriminant analysis and application for deep roadway[J]. Journal of Central South University(Science and Technology),2012,43(10): 222-226.(in Chinese))
    [7] 李宁, 王李管, 贾明涛. 基于粗糙集理论和支持向量机的岩爆预测[J]. 中南大学学报(自然科学版), 2017,48(5):1268-1275.(LI Ning, WANG Liguan, JIA Mingtao. Rockburst prediction based on rough set theory and support vector machine[J]. Journal of Central South University(Science and Technology),2017,48(5): 1268-1275.(in Chinese))
    [8] 徐琛, 刘晓丽, 王恩志, 等. 基于组合权重-理想点法的应变型岩爆五因素预测分级[J]. 岩土工程学报, 2017,39(12): 2245-2252.(XU Chen, LIU Xiaoli, WANG Enzhi, et al. Prediction and classification of strain mode rockburst based on five-factor criterion and combined weight-ideal point method[J]. Chinese Journal of Rock Mechanics and Engineering,2017,39(12): 2245-2252.(in Chinese))
    [9] 高玮. 基于蚁群聚类算法的岩爆预测研究[J]. 岩土工程学报, 2010,32(6): 874-880.(GAO Wei. Prediction of rock burst based on ant colony clustering algorithm[J]. Chinese Journal of Geotechnical Engineering,2010,32(6): 874-880.(in Chinese))
    [10] 张乐文, 张德永, 李术才, 等. 基于粗糙集理论的遗传-RBF神经网络在岩爆预测中的应用[J]. 岩土力学, 2012,33(S1): 270-276.(ZHANG Lewen, ZHANG Deyong, LI Shucai, et al. Application of RBF neural network to rockburst prediction based on rough set theory[J]. Rock and Soil Mechanics,2012,33(S1): 270-276.(in Chinese))
    [11] 汪明武, 魏东方, 周欣玮, 等. 基于联系矩阵的围岩稳定性组合评价模型[J]. 应用数学和力学, 2015,36(3): 294-302.(WANG Mingwu, WEI Dongfang, ZHOU Xinwei, et al. Connectional matrix-based combination evaluation method for surrounding rock stability[J]. Applied Mathematics and Mechanics,2015,36(3): 294-302.(in Chinese))
    [12] 周科平, 林允, 胡建华, 等. 基于熵权-正态云模型的岩爆烈度分级预测研究[J]. 岩土力学, 2016,37(S1): 596-602.(ZHOU Keiping, LIN Yun, HU Jianhua, et al. Grading prediction of rockburst intensity based on entropy and normal cloud model[J]. Rock and Soil Mechanics,2016,37(S1): 596-602.(in Chinese))
    [13] 贾义鹏, 吕庆, 尚岳全, 等. 基于证据理论的岩爆预测[J]. 岩土工程学报, 2014,36(6): 1079-1086.(JIA Yipeng, L Qing, SHANG Yuequan, et al. Rockburst prediction based on evidence theory[J]. Chinese Journal of Geotechnical Engineering,2014,36(6): 1079-1086.(in Chinese))
    [14] 汪明武, 金菊良. 联系数理论与应用[M]. 北京: 科学出版社, 2017.(WANG Mingwu, JIN Juliang. The Theory and Applications of Connection Numbers [M]. Beijing: Science Press, 2017.(in Chinese))
    [15] LI D Y, HAN J W, SHI X Mi, et al. Knowledge representation and discovery based on linguistic atoms[J]. Knowledge-Based Systems,1988,10(7): 431-440.
    [16] YAN S D, XIAN N T. Damage identification of offshore platform based on D-S evidence theory[J]. Advanced Materials Research,2011,255: 314-318.
    [17] DENG Y, SHI W K, ZHU Z F, et al. Combining belief functions based on distance of evidence[J]. Decision Support Systems,2004,38(3): 489-493.
  • 加载中
计量
  • 文章访问数:  552
  • HTML全文浏览量:  74
  • PDF下载量:  734
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-13
  • 修回日期:  2018-01-31
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回