## 留言板

 引用本文: 王昕炜, 彭海军, 钟万勰. 具有潜伏期时滞的时变SEIR模型的最优疫苗接种策略[J]. 应用数学和力学, 2019, 40(7): 701-712.
WANG Xinwei, PENG Haijun, ZHONG Wanxie. Optimal Vaccination Strategies for a Time-Varying SEIR Epidemic Model With Latent Delay[J]. Applied Mathematics and Mechanics, 2019, 40(7): 701-712. doi: 10.21656/1000-0887.400048
 Citation: WANG Xinwei, PENG Haijun, ZHONG Wanxie. Optimal Vaccination Strategies for a Time-Varying SEIR Epidemic Model With Latent Delay[J]. Applied Mathematics and Mechanics, 2019, 40(7): 701-712.

• 中图分类号: O232

## Optimal Vaccination Strategies for a Time-Varying SEIR Epidemic Model With Latent Delay

• 摘要: 该文在经典SEIR仓室模型的基础上，在由潜伏个体转化为感染个体的过程中，引入了时滞参数以刻画潜伏期的特性.同时，将传染系数改写为季节性变化参数，并通过引入疫苗接种和时变的成功免疫率，形成了含有时滞受控的时变SEIR模型.进一步地，在状态时滞最优控制问题的框架下，以疫苗接种率为控制变量，求解了基于该模型的传染病最优疫苗接种策略.在最优控制问题中，同时考虑了控制约束、易感染人口数上限、时变的疫苗产量上限三类约束.使用多区段的保辛伪谱方法对该问题进行求解.数值结果表明，计算得到的控制策略可以有效抑制传染病的传播.不同算例之间的对比说明忽略时变因素可能导致不合理的接种策略.
•  [1] KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Bulletin of Mathematical Biology,1991,53(1/2): 33-55. [2] ANDERSON R M, MAY R M. Infectious Diseases of Human: Dynamics and Control [M]. Oxford: Oxford University Press, 1992. [3] NEILAN R M, LENHART S. An introduction to optimal control with an application in disease modeling[J]. DIMACS Series in Discrete Mathematics,2010,159(40): 67-81. [4] BISWAS M H A, PAIVA L T, DE PINHO M. A SEIR model for control of infectious diseases with constraints[J]. Mathematical Biosciences and Engineering,2014,11(4): 761-784. [5] LEE S, CHOWELL G. Exploring optimal control strategies in seasonally varying flu-like epidemics[J]. Journal of Theoretical Biology,2017,412: 36-47. [6] MATEUS J P, REBELO P, ROSA S, et al. Optimal control of non-autonomous SEIRS models with vaccination and treatment[J]. Discrete and Continuous Dynamical Systems,2018,6: 1179-1199. [7] JACKSON T L, BYRNE H M. A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy[J]. Mathematical Biosciences,2000,〖STHZ〗 164(1): 17-38. [8] OKOSUN K O, MAKINDE O D. Modelling the impact of drug resistance in malaria transmission and its optimal control analysis[J]. International Journal of Physical Sciences,2011,〖STHZ〗 6(6): 6479-6487. [9] 孟新柱, 陈兰荪, 宋治涛. 一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J]. 应用数学和力学,2007,28(9): 1123-1134.(MENG Xinzhu, CHEN Lansun, SONG Zhitao. Global dynamics behaviors for a new delay SEIR epidemic disease model with vertical transmission and pulse vaccination[J]. Applied Mathematics and Mechanics,2007,28(9): 1123-1134.(in Chinese)) [10] ELHIA M, RACHIK M, BENLAHMAR E. Optimal control of an SIR model with delay in state and control variables[J]. ISRN Biomathematics,2013. DOI: 10.1155/2013/403549. [11] WANG X, PENG H, ZHANG S, et al. A symplectic local pseudospectral method for solving nonlinear state-delayed optimal control problems with inequality constraints[J]. International Journal of Robust and Nonlinear Control,2017,28(6): 2097-2120. [12] BRYSON A E, HO Y C. Applied Optimal Control [M]. Wiley, 1975. [13] FENG K, QIN M. Symplectic Geometric Algorithms for Hamiltonian Systems [M]. Berlin Heidelberg: Springer, 2010. [14] 钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHONG Wanxie. Symplectic Solution Methodology in Applied Mechanics [M]. Beijing: Higher Education Press, 2006.(in Chinese))
##### 计量
• 文章访问数:  2134
• HTML全文浏览量:  299
• PDF下载量:  605
• 被引次数: 0
##### 出版历程
• 收稿日期:  2019-01-28
• 修回日期:  2019-05-10
• 刊出日期:  2019-07-01

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈