留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含分布时滞递归神经网络的一般衰减同步

艾合麦提·麦麦提阿吉 李洪利

艾合麦提·麦麦提阿吉, 李洪利. 含分布时滞递归神经网络的一般衰减同步[J]. 应用数学和力学, 2019, 40(11): 1204-1213. doi: 10.21656/1000-0887.400127
引用本文: 艾合麦提·麦麦提阿吉, 李洪利. 含分布时滞递归神经网络的一般衰减同步[J]. 应用数学和力学, 2019, 40(11): 1204-1213. doi: 10.21656/1000-0887.400127
MUHAMMADHAJI Ahmadjan, LI Hongli. General Decay Synchronization for Recurrent Neural Networks With Distributed Time Delays[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1204-1213. doi: 10.21656/1000-0887.400127
Citation: MUHAMMADHAJI Ahmadjan, LI Hongli. General Decay Synchronization for Recurrent Neural Networks With Distributed Time Delays[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1204-1213. doi: 10.21656/1000-0887.400127

含分布时滞递归神经网络的一般衰减同步

doi: 10.21656/1000-0887.400127
基金项目: 国家自然科学基金(11601464;11702237)
详细信息
    作者简介:

    艾合麦提·麦麦提阿吉(1983—), 男, 维吾尔族, 副教授, 博士(通讯作者. E-mail: ahmatjanam@aliyun.com);李洪利(1983—), 男, 副教授, 博士(E-mail: lihongli3800087@163.com).

  • 中图分类号: O175.13

General Decay Synchronization for Recurrent Neural Networks With Distributed Time Delays

Funds: The National Natural Science Foundation of China(11601464;11702237)
  • 摘要: 对具有分布时滞的递归神经网络模型进行了研究,并通过构造适当的Lyapunov-Krasovskii函数和非线性控制函数,采用不等式估计方法,得到了所研究模型一般衰减同步的充分条件.最后给出了一个例子,进一步说明了所得结论的正确性.
  • [1] ZENG Z G, WANG J, LIAO X X. Global exponential stability of a general class of recurrent neural networks with time-varying delays[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,2003,50(10): 1353-1358.
    [2] CAO J D, WANG J. Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays[J]. Neural Networks,2004,17(3): 379-390.
    [3] CHEN B S, WANG J. Global exponential periodicity of a class of recurrent neural networks with oscillating parameters and time-varying delays[J]. IEEE Transactions on Neural Networks,2005,16(6): 1440-1448.
    [4] CAO J D, WANG J. Global asymptotic and robust stability of recurrent neural networks with time delays[J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2005,52(2): 417-426.
    [5] LI C G, LIAO X F. Robust stability and robust periodicity of delayed recurrent neural networks with noise disturbance[J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2006,53(10): 2265-2273.
    [6] HUANG X, CAO J D, DANIEL W C H. Existence and attractivity of almost periodic solution for recurrent neural networks with unbounded delays and variable coefficients[J]. Nonlinear Dynamics,2006,45(3/4): 337-351.
    [7] ZHANG H G, WANG Z S, LIU D R. Global asymptotic stability of recurrent neural networks with multiple time-varying delays[J]. IEEE Transactions on Neural Networks,2008,19(5): 855-873.
    [8] LOU X Y, CUI B T. Delay-dependent criteria for global robust periodicity of uncertain switched recurrent neural networks with time-varying delay[J]. IEEE Transactions on Neural Networks,2008,19(4): 549-557.
    [9] HU J, WANG J. Global stability of complex-valued recurrent neural networks with time-delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2012,23(6): 853-865.
    [10] SUN J, CHEN J. Stability analysis of static recurrent neural networks with interval time-varying delay[J].Applied Mathematics and Computation,2013,221: 111-120.
    [11] WEN S P, ZENG Z G, HUANG T W, et al. Passivity analysis of memristor-based recurrent neural networks with time-varying delays[J]. Journal of the Franklin Institute,2013,350(8): 2354-2370.
    [12] ZHOU L Q, ZHANG Y Y. Global exponential periodicity and stability of recurrent neural networks with multi-proportional delays[J]. ISA Transactions,2016,60: 89-95.
    [13] WU A L, WEN S P, ZENG Z G. Synchronization control of a class of memristor-based recurrent neural networks[J]. Information Sciences,2012,183: 106-116.
    [14] JIANG M H, WANG S T, MEI J, et al. Finite-time synchronization control of a class of memristor-based recurrent neural networks[J]. Neural Networks,2015,63: 133-140.
    [15] WU A L, ZENG Z G, ZHU X S, et al. Exponential synchronization of memristor-based recurrent neural networks with time delays[J]. Neurocomputing,2011,74: 3043-3050.
    [16] LI T, FEI S M, ZHANG K J. Synchronization control of recurrent neural networks with distributed delays[J].Physica A: Statistical Mechanics and Its Applications,2008,387: 982-996.
    [17] ABDURAHMAN A, JIANG H J, TENG Z D. Lag synchronization for Cohen-Grossberg neural networks with mixed time-delays via periodically intermittent control[J]. International Journal of Computer Mathematics,2017,94: 275-295.
    [18] MUHAMMADHAJI A, ABDURAHMAN A, JIANG H J. Finite-time synchronization of complex dynamical networks with time-varying delays and nonidentical nodes[J]. Journal of Control Science and Engineering,2017,2017: 1-13. DOI: 10.1155/2017/5072308.
    [19] HU C, JIANG H J, TENG Z D. Fuzzy impulsive control and synchronization of general chaotic system[J]. Acta Applicandae Mathematicae,2010,109(2): 463-485.
    [20] HU M F, XU Z Y. Adaptive feedback controller for projective synchronization[J]. Nonlinear Analysis: Real World Applications,2008,9(3): 1253-1260.
    [21] 张玮玮, 陈定元, 吴然超, 等. 一类基于忆阻器分数阶时滞神经网络的修正投影同步[J]. 应用数学和力学, 2018,39(2): 239-248. (ZHANG Weiwei, CHEN Dingyuan, WU Ranchao, et al. Modified-projective-synchronization of memristor-based fractional-order delayed neural networks[J]. Applied Mathematics and Mechanics,2018,39(2): 239-248. (in Chinese))
    [22] SADER M, ABDURAHMAN A, JIANG H J. General decay lag synchronization for competitive neural networks with constant delays[J]. Neural Process Letters,2019,50(1): 445-457.
    [23] WANG L M, SHEN Y, ZHANG G D. Synchronization of a class of switched neural networks with time-varying delays via nonlinear feedback control[J]. IEEE Trans Cyber,2016,46(10): 2300-2310.
    [24] WANG L M, SHEN Y, ZHANG G D. General decay synchronization stability for a class of delayed chaotic neural networks with discontinuous activations[J].Neurocomputing,2016,179: 169-175.
    [25] ABDURAHMAN A, JIANG H J, HU C. General decay synchronization of memristor-based Cohen-Grossberg neural networks with mixed time-delays and discontinuous activations[J]. Journal of the Franklin Institute,2017,354(15): 7028-7052.
  • 加载中
计量
  • 文章访问数:  1173
  • HTML全文浏览量:  230
  • PDF下载量:  401
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 修回日期:  2019-04-08
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回