留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑表面效应的压电纳米梁的振动研究

周强 张志纯 龙志林 武井祥 黄彬 金花

周强, 张志纯, 龙志林, 武井祥, 黄彬, 金花. 考虑表面效应的压电纳米梁的振动研究[J]. 应用数学和力学, 2020, 41(8): 853-865. doi: 10.21656/1000-0887.400330
引用本文: 周强, 张志纯, 龙志林, 武井祥, 黄彬, 金花. 考虑表面效应的压电纳米梁的振动研究[J]. 应用数学和力学, 2020, 41(8): 853-865. doi: 10.21656/1000-0887.400330
ZHOU Qiang, ZHANG Zhichun, LONG Zhilin, WU Jingxiang, HUANG Bin, JIN Hua. Vibration of Piezoelectric Nanobeams With Surface Effects[J]. Applied Mathematics and Mechanics, 2020, 41(8): 853-865. doi: 10.21656/1000-0887.400330
Citation: ZHOU Qiang, ZHANG Zhichun, LONG Zhilin, WU Jingxiang, HUANG Bin, JIN Hua. Vibration of Piezoelectric Nanobeams With Surface Effects[J]. Applied Mathematics and Mechanics, 2020, 41(8): 853-865. doi: 10.21656/1000-0887.400330

考虑表面效应的压电纳米梁的振动研究

doi: 10.21656/1000-0887.400330
基金项目: 国家自然科学基金(51471139)
详细信息
    作者简介:

    周强(1995—),男,硕士生(E-mail: 201721521313@smail.xtu.edu.cn);张志纯(1965—),男,副教授(通讯作者. E-mail: zhangzhch2188@163.com);龙志林(1969—),男,教授(E-mail: longzl@xtu.edu.cn);武井祥(1981—),男,讲师(E-mail: jingxiangwu@xtu.edu.cn);黄彬(1992—),男,硕士生(E-mail: cqswzqhb@163.com);金花(1995—),女,硕士生(E-mail: 15707970975@163.com).

  • 中图分类号: O321

Vibration of Piezoelectric Nanobeams With Surface Effects

Funds: The National Natural Science Foundation of China(51471139)
  • 摘要: 一维压电纳米材料在微纳米机电系统(MEMS/NEMS)中应用广泛,对其力学性能的有效表征至关重要。基于Gurtin-Murdoch表面理论,建立了一种表征一维纳米材料表面效应的新模型。基于Timoshenko梁理论,建立了考虑表面效应的压电纳米梁控制方程,推导了几种不同边界条件下压电纳米梁的频率方程和振型方程的精确解。提出了一种在有限元软件中实现表面效应模拟的计算方法,在ABAQUS中实现了考虑表面效应的压电纳米梁的数值模拟。理论结果和有限元模拟结果吻合较好,验证了理论模型的正确性和有效性。表面效应对纳米梁振动的频率影响显著,而在某种程度上对振型有一定的影响.
  • [1] ZHAO M H, WANG Z G, MAO S X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope[J]. Nano Letters,2004,4(4): 587-590.
    [2] RAMPRASAD R, SHI N. Dielectric properties of nanoscale HfO2 slabs[J]. Physical Review B,2005,72(5): 052107. DOI: 10.1103/PhysRevB.72.052107.
    [3] WANG Z L. ZnO nanowire and nanobelt platform for nanotechnology[J]. Materials Science and Engineering: R,2009,64(3/4): 33-71.
    [4] AIZPURUA J, BRYANT G W, RICHTER L J, et al. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy[J]. Physical Review B,2005,71(23): 235420. DOI: 10.1103/PhysRevB.71.235420.
    [5] MARANGONI V S, CANCINO-BERNARDI J, ZUCOLOTTO V. Synthesis, physico-chemical properties, and biomedical applications of gold nanorods: a review[J].Journal of Biomedical Nanotechnology,2016,12(6): 1136-1158.
    [6] HU X L, YU JC, GONG J M, et al.α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties[J]. Advanced Materials,2007,19(17): 2324-2329.
    [7] NGUYEN N T, HUANG X Y, CHUAN T K. MEMS-micropumps: a review[J]. Journal of Fluids Engineering,2002,124(2): 384-392.
    [8] GRAYSON A C R, SHAWGO R S, JOHNSON A M, et al. A BioMEMS review: MEMS technology for physiologically integrated devices[J]. Proceedings of the IEEE,2004,92(1): 6-21.
    [9] 张中太, 林元华, 唐子龙, 等. 纳米材料及其技术的应用前景[J]. 材料工程, 2000,3(7): 42-48.(ZHANG Zhongtai, LIN Yuanhua, TANG Zilong, et al. Nanometer materials & nanotechology and their application prospect[J]. Journal of Materials Engineering,2000,3(7): 42-48.(in Chinese))
    [10] 徐晓建, 邓子辰. 非局部因子和表面效应对微纳米材料振动特性的影响[J]. 应用数学和力学, 2013,34(1): 10-17.(XU Xiaojian, DENG Zichen. Surface effects of adsorption induced resonance analysis of micro/nanobeams via nonlocal elasticity[J]. Applied Mathematics and Mechanics,2013,34(1): 10-17.(in Chinese))
    [11] YUE Y M, XU K Y, ZHANG X D, et al. Effect of surface stress and surface-induced stress on behavior of piezoelectric nanobeam[J]. Applied Mathematics and Mechanics,2018,39(7): 953-966.
    [12] MILLER R E, SHENOY V B. Size-dependent elastic properties of nanosized structural elements[J]. Nanotechnology,2000,11(3): 139.
    [13] ZHANG J, WANG C Y, CHOWDHURY R, et al. Small-scale effect on the mechanical properties of metallic nanotubes[J]. Applied Physics Letters,2012,101(9): 093109. DOI: 10.1063/1.4748975.
    [14] GURTIN M E, MURDOCH A I. A continuum theory of elastic material surfaces[J]. Archive for Rational Mechanics and Analysis,1975,57(4): 291-323.
    [15] EREMEYEV V A. On effective properties of materials at the nano-and microscales considering surface effects[J]. Acta Mechanica,2016,227(1): 29-42.
    [16] HE L H, LIM C W, WU B S. A continuum model for size-dependent deformation of elastic films of nano-scale thickness[J]. International Journal of Solids and Structures,2004,41(3/4): 847-857.
    [17] MICHALSKI P J, SAI N, MELE E J. Continuum theory for nanotube piezoelectricity[J]. Physical Review Letters,2005,95(11): 116803. DOI: 10.1103/PhysRevLett.95.116803.
    [18] WANG G F, FENG X Q. Effect of surface stresses on the vibration and buckling of piezoelectric nanowires[J]. EPL(Europhysics Letters),2010,91(5): 56007. DOI: 10.1209/0295-5075/91/56007.
    [19] YAN Z, JIANG L Y. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects[J]. Nanotechnology,2011,22(24): 245703. DOI: 10.1088/0957-4484/22/24/245703.
    [20] YAN Z, JIANG L Y. Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires[J]. Journal of Physics D: Applied Physics,2011,44(7): 075404. DOI: 10.1088/0022-3727/44/7/075404.
    [21] ZHENG S J, ZHAO X, WANG H T. Theoretical and finite element modeling of piezoelectric nanobeams with surface and flexoelectricity effects[J]. Mechanics of Advanced Materials and Structures,2019,26(15): 1261-1270.
    [22] KE L L, WANG Y S, WANG Z D. Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory[J]. Composite Structures,2012,94(6): 2038-2047.
    [23] WU J X, LI X F, TANG A Y, et al. Free and forced transverse vibration of nanowires with surface effects[J]. Journal of Vibration and Control,2017,23(13): 2064-2077.
    [24] ROUHI H, EBRAHIMI F, ANSARI R, et al. Nonlinear free and forced vibration analysis of Timoshenko nanobeams based on Mindlin's second strain gradient theory[J]. European Journal of Mechanics a: Solids,2019,73: 268-281.
    [25] AVDIAJ S, SETINA J, SYLA N. Modeling of the piezoelectric effectusing the finite-element method(FEM)[J]. Materiali in Tehnologije,2009,43(6): 283-291.
    [26] 邢沁妍, 杨青浩, 陆琛宇, 等. 杆件轴向受迫振动的Galerkin有限元EEP法自适应求解[J]. 应用数学和力学, 2019,40(9): 945-956.(XING Qinyan, YANG Qinghao, LU Chenyu, et al. An EEP adaptive strategy of the Galerkin FEM for axially forced vibration of bars[J]. Applied Mathematics and Mechanics,2019,40(9): 945-956.(in Chinese))
    [27] MOHTASHAMI M, BENI Y T. Size-dependent buckling and vibrations of piezoelectric nanobeam with finite element method[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering,2019,43(3): 563-576.
    [28] VISWANATH R N, KRAMER D, WEISSMLLER J. Variation of the surface stress-charge coefficient of platinum with electrolyte concentration[J]. Langmuir,2005,21(10): 4604-4609.
    [29] FRIESEN C, DIMITROV N, CAMMARATA R C, et al. Surface stress and electrocapillarity of solid electrodes[J]. Langmuir,2001,17(3): 807-815.
    [30] HAISS W, NICHOLS R J, SASS J K, et al. Linear correlation between surface stress and surface charge in anion adsorption on Au(111)[J]. Journal of Electroanalytical Chemistry,1998,452(2): 199-202.
    [31] HUANG G Y, YU S W. Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring[J]. Physica Status Solidi(B),2006,243(4): R22-R24.
    [32] CHEN T Y, CHIU M S, WENG C N. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids[J]. Journal of Applied Physics,2006,100(7): 074308. DOI: 10.1063/1.2356094.
    [33] HE Q L, LILLEY C M. Resonant frequency analysis of Timoshenko nanowires with surface stress for different boundary conditions[J]. Journal of Applied Physics,2012,112(7): 074322. DOI: 10.1063/1.4757593.
    [34] 吴金根, 高翔宇, 陈建国, 等. 高温压电材料、器件与应用[J]. 物理学报, 2018,67(20): 207701.(WU Jianguo, GAO Xiangyu, CHEN Jianguo, et al. Review of high temperature piezoelectric materials, devices, and applications[J]. Acta Physica Sinica,2018,67(20): 207701.(in Chinese))
    [35] YAN Z, JIANG L Y. Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects[J]. Journal of Physics D: Applied Physics,2011,44(36): 365301. DOI: 10.1088/0022-3727/44/36/365301.
    [36] WANG G F, FENG X Q. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams[J]. Applied Physics Letters,2007,90(23): 231904. DOI: 10.1063/1.2746950.
  • 加载中
计量
  • 文章访问数:  1747
  • HTML全文浏览量:  227
  • PDF下载量:  334
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 修回日期:  2019-12-25
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回