留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低压对变温环境下高聚物黏结炸药界面损伤的抑制

张超 刘占芳

张超, 刘占芳. 低压对变温环境下高聚物黏结炸药界面损伤的抑制[J]. 应用数学和力学, 2020, 41(10): 1057-1071. doi: 10.21656/1000-0887.410092
引用本文: 张超, 刘占芳. 低压对变温环境下高聚物黏结炸药界面损伤的抑制[J]. 应用数学和力学, 2020, 41(10): 1057-1071. doi: 10.21656/1000-0887.410092
ZHANG Chao, LIU Zhanfang. Inhibition of Low Pressure on Interfacial Damage in Polymer Bonded Explosive Under Temperature Fluctuation[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1057-1071. doi: 10.21656/1000-0887.410092
Citation: ZHANG Chao, LIU Zhanfang. Inhibition of Low Pressure on Interfacial Damage in Polymer Bonded Explosive Under Temperature Fluctuation[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1057-1071. doi: 10.21656/1000-0887.410092

低压对变温环境下高聚物黏结炸药界面损伤的抑制

doi: 10.21656/1000-0887.410092
基金项目: 国家自然科学基金(51375416)
详细信息
    作者简介:

    张超(1993—),男,硕士生(E-mail: 799068902@qq.com);刘占芳(1963—),男,教授,博士生导师(通讯作者. E-mail: zhanfang@cqu.edu.cn).

  • 中图分类号: O34

Inhibition of Low Pressure on Interfacial Damage in Polymer Bonded Explosive Under Temperature Fluctuation

Funds: The National Natural Science Foundation of China(51375416)
  • 摘要: 该文旨在探究低压对变温环境下高聚物黏结炸药(polymer-bonded explosive,PBX)界面损伤的影响.首先基于Voronoi法生成PBX二维几何模型,并考虑炸药晶体颗粒为弹塑性、黏结剂为双层黏塑性以及采用零厚度内聚力模型反映界面黏结状况,研究了温度变化时PBX界面黏结性能的改变;再基于热力耦合处理方法,研究了低压对变温环境下PBX界面损伤的抑制作用,拟合了降温阶段界面法向应力随低压变化的曲线.结果表明,升温阶段主要是由界面切向应力导致初始损伤,降温阶段主要是界面法向应力导致界面损伤,降温比升温更容易导致界面损伤;无论升温或降温,一定的低压载荷能够抑制界面损伤,但压力过大可能导致新的损伤;为抑制界面损伤,降温过程需要的压力应高于升温过程需要的压力,这与降温阶段的界面损伤较大是一致的.
  • [1] 孙业斌, 惠君明, 曹欣茂. 军用混合炸药[M]. 北京: 兵器工业出版社, 1995.(SUN Yebin, HUI Junming, CAO Xinmao. Military Mixed Explosives [M]. Beijing: Weapons Industry Press, 1995.(in Chinese))
    [2] 松全才, 杨崇惠, 金韶华. 炸药理论[M]. 北京: 国防工业出版社, 1997.(SONG Quancai, YANG Chonghui, JIN Shaohua. Theory of Explosives [M]. Beijing: National Defense Industry Press, 1997.(in Chinese))
    [3] 罗景润. PBX的损伤、断裂及本构关系研究[D]. 博士学位论文. 绵阳: 中国工程物理研究院, 2001.(LUO Jingrun. Study on damage, fracture and constitutive relationship of PBX[D]. PHD Thesis. Mianyang: China Academy of Engineering Physics, 2001.(in Chinese))
    [4] TREVOR M W, TONY V B, JONATHAN L, et al. Changes in pore size distribution upon thermal cycling of TATB-based explosives measured by ultra-small angle X-Ray scattering[J]. Propellants, Explosives, Pyrotechnics,2006,31(6): 466-471.
    [5] DARLA G T, RICARDO B S, RACCI D L. Irreversible volume expansion of a TATB-based composite and compressive strength[C]//19th Biennial Conference on Shock Compression of Condensed Matter, American Physical Society . Tampa, Florida, United States, 2015.
    [6] JEAN B G, FRANCOIS W, HERVE T, et al. Thermoelastic properties of microcracked polycrystals, part Ⅱ: the case of jointed polycrystalline TATB [J]. International Journal of Solids and Structures,2018,155: 1-51.
    [7] HARRELL D. Bartherm processing of small LX-14 pressings[R]. MHSMP-75-20F, 1975, 1-3.
    [8] 兰琼, 戴斌, 杨白凤, 等. 温压时效处理PBX内部裂纹愈合现象研究[J]. 含能材料, 2016,21(2): 205-208.(LAN Qiong, DAI Bin, YANG Baifeng, et al. Healing of cracks in PBX by thermal pressure aging treatment[J]. Chinese Journal of Energetic Materials,2016,21(2): 205-208.(in Chinese))
    [9] RAE P J, PALMER S J P, GOLDREIN H T, et al. Quasi-static studies of the deformation and failure of PBX 9501[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences,2002,458(2025): 2227-2242.
    [10] DAI K D, LU B D, CHEN P W, et al. Modelling microstructural deformation and the failure process of plastic bonded explosives using the cohesive zone model[J]. Materials,2019,12(22): 3661. DOI: 10.3390/ma12223661.
    [11] 陈青青, 张煜航, 张杰, 等. 含孔隙混凝土二维细观建模方法研究[J]. 应用数学和力学, 2020,41(2): 182-194.(CHEN Qingqing, ZHANG Yuhang, ZHANG Jie, et al. Study on a 2D microscopic modeling method of for concrete with voids[J]. Applied Mathematics and Mechanics,2020,41(2): 182-194.(in Chinese))
    [12] 史君林, 赵建平. 含三晶交多晶体沿晶断裂数值建模方法研究[J]. 机械强度, 2018,40(4): 844-851.(SHI Junlin, ZHAO Jianping. Investigation on finite element modeling method of with triple junction polycrystalline intergranular fracture[J]. Journal of Mechanical Strength,2018,40(4): 844-851.(in Chinese))
    [13] 张煜航, 陈青青, 张杰, 等. 混凝土三维细观模型的建模方法与力学特性分析[J]. 爆炸与冲击, 2019,39(5): 054205.(ZHANG Yuhang, CHEN Qingqing, ZHANG Jie, et al. 3D mesoscale modeling method and dynamic mechanical properties investigation of concrete[J]. Explosion and Shock Waves,2019,39(5): 054205.(in Chinese))
    [14] 陈鹏万, 丁雁生. 高聚物粘结炸药的力学行为及变形破坏机理[J]. 含能材料, 2000,8(4): 161-164.(CHEN Pengwan, DING Yansheng. Mechanical behavior and deformation and failure mechanism of polymer bonded explosives[J]. Chinese Journal of Energetic Materials,2000,8(4): 161-164.(in Chinese))
    [15] ANDREY A, FRANOIS W, DOMINIQUE J. Numerical modeling of the thermal expansion of an energetic material[J]. International Journal of Solids and Structures,2015,60/61: 125-139.
    [16] 温茂萍, 唐维, 董平, 等. 粘结剂含量对热压TATB基PBX残余应力的影响[J]. 含能材料, 2017,25(8): 661-666.(WEN Maoping, TANG Wei, DONG Ping, et al. Effect of binder content on residual stress of thermally compacted TATB based PBX[J]. Chinese Journal of Energetic Materials,2017,25(8): 661-666.(in Chinese))
    [17] SUN J, KANG B, ZHANG H, et al. Investigation on irreversible expansion of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene cylinder[J]. Central European Journal of Energetic Materials,2011,8(1): 69-79.
    [18] 丁雁生, 潘颖, 蔡瑞娇, 等. PBX材料的蠕变损伤本构关系[J]. 含能材料, 2000,8(2): 86-90.(DING Yansheng, PAN Ying, CAI Ruijiao, et al. The creep-damage constitutive relation of PBX[J]. Chinese Journal of Energetic Materials,2000,8(2): 86-90.(in Chinese))
    [19] 李明, 温茂萍, 何强, 等. TATB基高聚物粘结炸药的蠕变特性研究[J]. 含能材料, 2005,13(3): 150-154.(LI Ming, WEN Maoping, HE Qiang, et al. The compressive creep behavior of PBX based TATB[J]. Chinese Journal of Energetic Materials,2005,13(3): 150-154.(in Chinese))
    [20] KANG J J, BECKER A A, SUN W. Determination of elastic and viscoplastic material properties obtained from indentation tests using a combined finite element analysis and optimization approach[J]. Journal of Materials: Design and Applications,2015,229(3): 175-188.
    [21] ADEL A W, SABBAH A, VADIM V, et al. Temperature-dependent mechanical behaviour of PMMA: experimental analysis and modelling[J]. Polymer Testing,2017,58: 86-95.
    [22] 唐维, 李明, 张丘, 等. PBX部件机械加工过程中的夹持变形预测[J]. 含能材料, 2008,16(6): 703-707.(TANG Wei, LI Ming, ZHANG Qiu, et al. Prediction for clamping deformation of PBX parts on mechanical process[J]. Chinese Journal of Energetic Materials,2008,16(6): 703-707.(in Chinese))
    [23] WIEGAND D A, PINTO J. The composition of polymer composite fracture surfaces by XPS[J]. Materials Research Society Symposium Proceedings,1996,409: 281-286.
    [24] WIEGAND D A, SCHMIDT S C, DANDEKAR D P, et al. Mechanical failure properties of composite plastic bonded explosives[J]. AIP Conference Proceedings,1998,429, 599-602.
    [25] RAE P J, GOLDREIN H T, PALMER S J P, et al. Quasi-static studies of the deformation and failure of β -HMX based polymer bonded explosives[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences,2002,458: 743-762.
    [26] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids,1960,8(2): 100-104.
    [27] TURON A, CAMANHO P P, COSTA J. A damage model for the simulation of delamination in advanced composites under variable mode loading[J]. Mechanics of Materials,2006,38(11): 1072-1089.
    [28] MANIVANNAN R, JONG S L, YANG S H, et al. Delamination characterization of bonded interface in polymer coated steel using surface based cohesive model[J]. International Journal of Precision Engineering and Manufacturing,2013,14(10): 1-11.
    [29] 郭双喜, 李雪芹. 记及压应力的内聚力单元及其厚度对复合材料分层损伤预测的影响[J]. 玻璃钢/复合材料, 2019,2: 20-25.(GUO Shuangxi, LI Xueqin. The influences of cohesive element compressive stress and its thickness on delamination prediction of composite[J]. Fiber Reinforced Plastics/Composites,2019,2: 20-25.(in Chinese))
    [30] 姚振华, 李亚智, 刘向东, 等. 复合材料层合板低速冲击后剩余压缩强度研究[J]. 西北工业大学学报, 2012,30(4): 518-523.(YAO Zhenhua, LI Yazhi, LIU Xiangdong, et al. Effectively calculating residual compressive strength of composite laminae after impact[J]. Journal of Northwestern Polytechnical University,2012,30(4): 518-523.(in Chinese))
    [31] 颜熹琳, 唐明峰, 甘海啸, 等. 拉剪复合试验测试炸药晶体/粘结剂界面力学特性[J]. 含能材料, 2016,〖STHZ〗 24(6): 587-591.(YAN Xiling, TANG Mingfeng, GAN Haixiao, et al. Mechanical characteristics of explosive crystal/binder interface tested by tensile shear composite test[J].Chinese Journal of Energetic Materials,2016,24(6): 587-591.(in Chinese))
    [32] 黄西成, 李尚昆, 魏强, 等. 基于XFEM与Cohesive模型分析PBX裂纹产生与扩展[J]. 含能材料, 2017,〖STHZ〗 25(8): 694-700.(HUANG Xicheng, LI Shangkun, WEI Qiang, et al. Analysis of crack initiation and growth in PBX energetic material using XFEM-based cohesive method[J]. Chinese Journal of Energetic Materials,2017,25(8): 694-700.(in Chinese))
    [33] 郑保辉, 殷明, 耿呈祯, 等. 壳体约束下浇注PBX的温度适应性[J]. 含能材料, 2017,25(3): 232-239.(ZHENG Baohui, YIN Ming, GENG Chengzhen, et al. Temperature adaptability of cast PBX under restriction shell[J]. Chinese Journal of Energetic Materials,2017,25(3): 232-239.(in Chinese))
    [34] 韦兴文, 吴束力, 唐兴. HMX基PBX热损伤的数值计算与实验研究[J]. 火炸药学报, 2014,37(4): 9-13.(WEI Xinwen, WU Shuli, TANG Xing. Numerical calculation and experimental study on thermal damage of HMX based poly bonded explosives[J]. Chinese Journal of Explosives & Propellants,2014,37(4): 9-13.(in Chinese))
  • 加载中
计量
  • 文章访问数:  460
  • HTML全文浏览量:  66
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-02
  • 修回日期:  2020-09-20
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回