留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于嵌入式多项式混沌展开法的随机边界下流动与传热问题不确定性量化

姜昌伟 刘星 石尔 李韬海 江怡

姜昌伟, 刘星, 石尔, 李韬海, 江怡. 基于嵌入式多项式混沌展开法的随机边界下流动与传热问题不确定性量化[J]. 应用数学和力学, 2021, 42(5): 481-491. doi: 10.21656/1000-0887.410217
引用本文: 姜昌伟, 刘星, 石尔, 李韬海, 江怡. 基于嵌入式多项式混沌展开法的随机边界下流动与传热问题不确定性量化[J]. 应用数学和力学, 2021, 42(5): 481-491. doi: 10.21656/1000-0887.410217
JIANG Changwei, LIU Xing, SHI Er, LI Taohai, JIANG Yi. Uncertainty Quantification of Flow and Heat Transfer Problems With Stochastic Boundary Conditions Based on the Intrusive Polynomial Chaos Expansion Method[J]. Applied Mathematics and Mechanics, 2021, 42(5): 481-491. doi: 10.21656/1000-0887.410217
Citation: JIANG Changwei, LIU Xing, SHI Er, LI Taohai, JIANG Yi. Uncertainty Quantification of Flow and Heat Transfer Problems With Stochastic Boundary Conditions Based on the Intrusive Polynomial Chaos Expansion Method[J]. Applied Mathematics and Mechanics, 2021, 42(5): 481-491. doi: 10.21656/1000-0887.410217

基于嵌入式多项式混沌展开法的随机边界下流动与传热问题不确定性量化

doi: 10.21656/1000-0887.410217
基金项目: 国家自然科学基金(11572056);湖南省自然科学基金(2018JJ3533)
详细信息
    作者简介:

    姜昌伟(1973—),男,教授,博士,硕士生导师(E-mail: jiangcw@csust.edu.cn);石尔(1978—),女,讲师,博士,硕士生导师(通讯作者. E-mail: shier@csust.edu.cn).

  • 中图分类号: TK124

Uncertainty Quantification of Flow and Heat Transfer Problems With Stochastic Boundary Conditions Based on the Intrusive Polynomial Chaos Expansion Method

Funds: The National Natural Science Foundation of China(11572056)
  • 摘要: 提出了一种嵌入式多项式混沌展开(polynomial chaos expansion, PCE)的随机边界条件下流动与传热问题不确定性量化方法及有限元程序框架.该方法利用Karhunen-Loeve展开表达随机输入边界条件,以及嵌入式多项式混沌展开法表达输出随机场;同时利用谱分解技术将控制方程转化为一组确定性控制方程,并对每个多项式混沌进行求解得到其统计特征.与Monte-Carlo法相比,该方法能够准确高效地预测随机边界条件下流动与传热问题的不确定性特征,同时可以节省大量计算资源.
  • [1] LUKOSE L, BASAK T. Numerical heat flow visualization analysis on enhanced thermal processing for various shapes of containers during thermal convection[J]. International Journal of Numerical Methods for Heat & Fluid Flow,2019,30(7): 3535-3583.
    [2] 宁利中, 张迪, 宁碧波, 等. 侧向局部加热对流的周期性[J]. 应用数学和力学, 2020,41(2): 125-133.(NING Lizhong, ZHANG Di, NING Bibo, et al. Periodicity of convection under lateral local heating[J]. Applied Mathematics and Mechanics,2020,41(2): 125-133.(in Chinese))
    [3] 梁霄, 王瑞利. 基于非嵌入多项式混沌的爆轰不确定度量化[J]. 计算力学学报, 2019,36(5): 672-677.(LIANG Xiao, WANG Ruili. Uncertainty quantification of detonation based on non-intrusive polynomial chaos[J]. Chinese Journal of Computational Mechanics,2019,36(5): 672-677.(in Chinese))
    [4] WANG Kun, CHEN Fu, YU Jianyang, et al. Nested sparse-grid stochastic collocation method for uncertainty quantification of blade stagger angle[J]. Energy,2020,201: 117583.
    [5] 张雪丹, 姜益强, 姚杨, 等. 岩土热响应试验不确定性研究及敏感性分析[J]. 天津大学学报, 2017,50(3): 306-312.(ZHANG Xuedan, JIANG Yiqiang, YAO Yang, et al. Uncertainty study and sensitivity analysis of soil-rock thermal response test[J]. Journal of Tianjin University,2017,50(3): 306-312.(in Chinese))
    [6] MATTIAS A C, MICHAEL A C, MARGOT G G. Monte Carlo simulation for uncertainty quantification in reservoir simulation: a convergence study[J]. Journal of Petroleum Science and Engineering,2020,190: 107094.
    [7] WU F, ZHONG W X. A modified stochastic perturbation method for stochastic hyperbolic heat conduction problems[J]. Computer Methods in Applied Mechanics and Engineering,2016,305(15): 937-958.
    [8] 唐新姿, 王效禹, 袁可人, 等. 风速不确定性对风力机气动力影响量化研究[J]. 力学学报, 2020,52(1): 51-59.(TANG Xinzi, WANG Xiaoyu, YUAN Keren, et al. Quantitation study of influence of wind speed uncertainty on aerodynamic forces of wind turbine[J]. Chinese Journal of Theoretical and Applied Mechanics,2020,52(1): 51-59.(in Chinese))
    [9] VALDEZ A R, ROCHA B M, CHAPIRO G C, et al. Uncertainty quantification and sensitivity analysis for relative permeability models of two-phase flow in porous media[J]. Journal of Petroleum Science and Engineering,2020,192: 107297.
    [10] 万华平, 邰永敢, 钟剑, 等. 基于多项式混沌展开的结构动力特性高阶统计矩计算[J]. 应用数学和力学, 2018,39(12): 1331-1342.(WAN Huaping, TAI Yonggan, ZHONG Jian, et al. Computation of high-order moments of structural dynamic characteristics based on polynomial chaos expansion[J]. Applied Mathematics and Mechanics,2018,39(12): 1331-1342.(in Chinese))
    [11] CALATAYUD J, CORTES J C, JORNET M. Uncertainty quantification for nonlinear difference equations with dependent random inputs via a stochastic Galerkin projection technique[J]. Communications in Nonlinear Science and Numerical Simulation,2019,72(30): 108-120.
    [12] SALEHI S, RAISEE M, CERVANTES M, et al. Efficient uncertainty quantification of stochastic CFD problems using sparse polynomial chaos and compressed sensing[J]. Computers and Fluids,2017,154: 296-321.
    [13] 吴昕, 聂俊, 王维萌, 等. 基于Monte Carlo方法的叶片顶部间隙不确定性分析[J]. 热能动力工程, 2018,33(1): 60-68.(WU Xin, NIE Jun, WANG Weimeng, et al. Analysis of the uncertainty of the blade tip clearances based on the Monte Carlo method[J]. Journal of Engineering for Thermal Energy and Power,2018,33(1): 60-68.(in Chinese))
    [14] WIENER N. The homogeneous chaos[J]. American Journal of Mathematics,1938,60(4): 897-936.
    [15] XIU D, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal Computational Physics,2003,187(1): 137-167.
    [16] SON J, DU J. Comparison of intrusive and nonintrusive polynomial chaos expansion-based approaches for high dimensional parametric uncertainty quantification and propagation[J]. Computers and Chemical Engineering,2020,134: 106685.
    [17] MOHAMMADI A, RAISEE M. Efficient uncertainty quantification of stochastic heat transfer problems by combination of proper orthogonal decomposition and sparse polynomial chaos expansion[J]. International Journal of Heat and Mass Transfer,2019,128: 581-600.
    [18] SHAHANE S, ALURU N R, VANKA S P. Uncertainty quantification in three dimensional natural convection using polynomial chaos expansion and deep neural networks[J]. International Journal of Het and Mass Transfer,2019,139: 613-631.
    [19] 王晓东, 康顺. 多项式混沌方法在随机方腔流动模拟中的应用[J]. 中国科学: 技术科学, 2011,41(6): 790-798.(WANG Xiaodong, KANG Shun. Application of polynomial chaos on numerical simulation of stochastic cavity flow[J]. Science China: Technological Science,2011,41(6): 790-798. (in Chinese))
    [20] CHAKRABORTY S, CHOWDHURY R. Modelling uncertainty in incompressible flow simulation using Galerkin based on generalized ANOVA[J]. Computer Physics Communications,2016,208: 73-91.
    [21] YANG H Q, ZHANG L L, LI D Q. Efficient method for probabilistic estimation of spatially varied hydraulic properties in a soil slope based on field response: a Bayesian approach[J]. Computers and Geotechnics,2018,102: 262-272.
  • 加载中
计量
  • 文章访问数:  1252
  • HTML全文浏览量:  265
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-22
  • 修回日期:  2020-10-10
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回