留言板

 引用本文: 张伟, 张文普. 基于Schwarz-Christoffel变换的非圆截面血管流场分布研究[J]. 应用数学和力学, 2021, 42(5): 470-480.
ZHANG Wei, ZHANG Wenpu. Research on the Flow Field Distribution of Non-Circular Cross-Section Vessels Based on the Schwarz-Christoffel Transformation[J]. Applied Mathematics and Mechanics, 2021, 42(5): 470-480. doi: 10.21656/1000-0887.410267
 Citation: ZHANG Wei, ZHANG Wenpu. Research on the Flow Field Distribution of Non-Circular Cross-Section Vessels Based on the Schwarz-Christoffel Transformation[J]. Applied Mathematics and Mechanics, 2021, 42(5): 470-480.

• 中图分类号: O241

Research on the Flow Field Distribution of Non-Circular Cross-Section Vessels Based on the Schwarz-Christoffel Transformation

• 摘要: 应用Schwarz-Christoffel(S-C)变换方法，实现从复平面单位圆到多边形区域的共形映射，结合圆形管道下完全发展脉动流的Womersley算法理论，建立了基于S-C映射的非圆入口截面下的Womersley速度边界模型.在边界模型建立的基础上，应用计算流体力学方法，对基于生理真实的人体肺动脉二级分支血管在一个心动周期内的血流流动情况进行了数值模拟，并与通过外接圆管法设定入口速度边界条件得到的流场模拟结果进行了对比分析.分析结果表明，两者的模拟结果高度一致，但考虑到模拟效率和数值模拟结果的确定性，基于S-C映射的Womersley速度边界模型优于外接圆管方法，对于血管血流动力学的模拟研究更具有现实意义.
•  [1] 刘有军, 乔爱科. 血流动力学及其医学应用[J]. 医用生物力学, 2012,27(5): 475-480.(LIU Youjun, QIAO Aike. Hemodynamics and its medical application[J]. Journal of Medical Biomechanics,2012,27(5): 475-480.(in Chinese)) [2] TAYLOR C A, HUGHES T J R, ZARINS C K. Finite element modeling of blood flow in arteries[J]. Computer Methods in Applied Mechanics and Engineering,1998,158(1/2): 156-196. [3] WEI Z A, HUDDLESTON C, TRUSTY P M, et al. Analysis of inlet velocity profiles in numerical assessment of fontan hemodynamics[J]. Annals of Biomedical Engineering,2019,47(11): 2258-2270. [4] TORII R, MARIE OSHIMA M, TOSHIO KOBAYASHI T, et al. Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes[J]. Computer Methods in Applied Mechanics and Engineering,2009,〖STHZ〗 198(45): 3613-3621. [5] TEZDUYAR T E, SATHE S. Modelling of fluid-structure interactions with the space-time finite elements: solution techniques[J]. International Journal for Numerical Methods in Fluids,2007,54(6/8): 855-900. [6] 阚丽丽, 张文普, 王丽华. 基于CT影像的肺动脉及其分支血流动力学数值研究[J]. 浙江大学学报, 2010,39(6): 602-609.(KAN Lili, ZHANG Wenpu, WANG Lihua. Flow simulation of normal pulmonary artery branches based on CT image[J]. Journal of Zhejiang University(Medical Sciences),2010,39(6): 602-609.(in Chinese)) [7] 崔建斌, 姬安召, 熊贵明. 基于Schwarz-Christoffel 变换的圆形隧道围岩应力分布特征研究[J]. 应用数学和力学, 2019,40(10): 1089-1098.(CUI Jianbin, JI Anzhao, XIONG Guiming. Research on surrounding rock stress distributions for circular tunnels based on the Schwarz-Christoffel transformation[J]. Applied Mathematics and Mechanics,2019,40(10): 1089-1098.(in Chinese)) [8] WANG Z G, LIAO T, WANG Y N. Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation[J]. Chinese Physics B,2019,28(5): 426-434. [9] 龙非池, 王慧. 〖JP2〗基于 Schwarz-Christoffel 变换的平板电容器电场电荷分布仿真[J]. 物理与工程, 2007,17(6): 25-27.(LONG Feichi, WANG Hui. Simulation on the distribution of electric field and charges of flat capacitor based on Schwarz-Christoffel transformation[J]. Physics and Engineering,2007,17(6): 25-27.(in Chinese)) [10] 刘兴伟, 李星, 汪文帅. 一维六方压电准晶中正 n 边形孔边裂纹的反平面问题[J]. 应用数学与力学, 2020,41(7): 713-724.(LIU Xingwei, LI Xing, WANG Wenshuai. The anti-plane problem of regular n -polygon holes with radial edge cracks in 1D hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics,2020,41(7): 713-724.(in Chinese)) [11] 张光生, 王玉风, 姬安召, 等. 基于Schwarz-Christoffel变换的曲流河井位映射计算[J]. 应用数学与力学, 2020,41(7): 771-785.(ZHANG Guangsheng, WANG Yufeng, JI Anzhao, et al. Mapping calculation of meandering river well locations based on the Schwarz-Christoffel transform[J]. Applied Mathematics and Mechanics,2020,41(7): 771-785.(in Chinese)) [12] TOBIN A D, LLOYD N T. Schwarz-Christoffel Mapping [M]. Cambridge: Cambridge University Press, 2002. [13] 李惜惜, 柳兆荣. 血流动力学原理和方法[M]. 上海: 复旦大学出版社, 1997.(LI Xixi, LIU Zhaorong. Principles and Methods of Hemodynamics [M]. Shanghai: Fudan University Press, 1997.(in Chinese)) [14] WOMERSLEY J R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known[J]. The Journal of Physiology,1955,127(3): 553-563. [15] KU D N. Blood flow in arteries[J]. Annual Review of Fluid Mechanics,1997,29: 399-434. [16] CHEN X P, ZHUANG J, WU Y H. The effect of Womersley number and particle radius on the accumulation of lipoproteins in the human aorta[J]. Computer Methods in Biomechanics and Biomedical Engineering,2020,23(10): 571-584. [17] PRASHANTHA B, ANISH S. Discrete-phase modelling of an asymmetric stenosis artery under different Womersley numbers[J]. Arabian Journal for Science and Engineering,2019,44(2): 1001-1015.
计量
• 文章访问数:  1202
• HTML全文浏览量:  284
• PDF下载量:  179
• 被引次数: 0
出版历程
• 收稿日期:  2020-09-08
• 修回日期:  2020-11-16
• 刊出日期:  2021-05-01

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈