留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芳纶纤维平纹织布在爆炸载荷下的动态响应与失效行为的数值分析

冯振宇 姜超 高斌元 解江 裴惠

冯振宇,姜超,高斌元,解江,裴惠. 芳纶纤维平纹织布在爆炸载荷下的动态响应与失效行为的数值分析 [J]. 应用数学和力学,2021,42(11):1113-1125 doi: 10.21656/1000-0887.420025
引用本文: 冯振宇,姜超,高斌元,解江,裴惠. 芳纶纤维平纹织布在爆炸载荷下的动态响应与失效行为的数值分析 [J]. 应用数学和力学,2021,42(11):1113-1125 doi: 10.21656/1000-0887.420025
FENG Zhenyu, JIANG Chao, GAO Binyuan, XIE Jiang, PEI Hui. Numerical Study on Dynamic Responses and Failure Behaviours of Aramid Fabrics Subject to Blast Loads[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1113-1125. doi: 10.21656/1000-0887.420025
Citation: FENG Zhenyu, JIANG Chao, GAO Binyuan, XIE Jiang, PEI Hui. Numerical Study on Dynamic Responses and Failure Behaviours of Aramid Fabrics Subject to Blast Loads[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1113-1125. doi: 10.21656/1000-0887.420025

芳纶纤维平纹织布在爆炸载荷下的动态响应与失效行为的数值分析

doi: 10.21656/1000-0887.420025
基金项目: 航空科学基金(201941067001)
详细信息
    作者简介:

    冯振宇(1966—),男,教授,博士,博士生导师(E-mail:mhfzy@163.com

    解江(1982—),男,副研究员,博士,硕士生导师(通讯作者. E-mail:xiejiang5@126.com

  • 中图分类号: O38

Numerical Study on Dynamic Responses and Failure Behaviours of Aramid Fabrics Subject to Blast Loads

  • 摘要: 为了研究柔性纤维织布的抗爆性能,通过数值模拟的方法对芳纶纤维织布在爆炸冲击下的响应与失效行为进行了分析。对国产芳纶纤维织布H1000D-AP220进行了力学性能试验,建立了柔性平纹织布的本构模型和爆炸冲击数值分析模型,对不同厚度不同铺层角度织布进行了爆炸冲击数值分析,获得了织布在不同爆炸载荷下的动态响应和失效模式。结果表明,织布在爆炸冲击载荷下主要表现为中心撕裂破孔和简支边界处拉伸撕裂2种典型的失效模式,并伴有明显褶皱,宽度方向出现织布向内侧收缩翻转现象;相比于中间层织布,迎爆面和背爆面吸能较多;在计算分析中改变了织布的层叠角度,获得了更好的抗爆效果。
  • 图  1  准静态拉伸试验件(单位: mm)

    Figure  1.  The specimen for the quasi-static tensile test (unit: mm)

    图  2  芳纶织布单轴拉伸试验及材料模型的应力-应变曲线

    Figure  2.  Stress-strain curves in longitudinal uniaxial tension and stress-strain curves of the fabric model

    图  3  织布单轴拉伸试验件典型失效过程

    Figure  3.  The typical failure process of the fabric specimen from the uniaxial tensile test

    图  4  动态拉伸试验件(单位:mm)

    Figure  4.  The specimen for the dynamic tension test (unit:mm)

    图  5  不同应变率下芳纶纤维织布的应力-应变曲线

    Figure  5.  Stress-strain curves of aramid fiber fabrics under different strain rates

    图  6  试验设计图

    Figure  6.  The test setup

    图  7  弹片冲击织布的过程

    Figure  7.  The process of impacting

    图  8  击穿后的试验件

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  8.  The specimen after puncture

    图  9  织布弹道冲击数值分析结果

    Figure  9.  Numerical analysis results of the fabric under ballistic impact

    图  10  试验和数值分析织布损伤形貌对比

    Figure  10.  Comparison of damage morphology between the test and the numerical analysis

    图  11  有限元模型

    Figure  11.  The finite element model

    图  12  60 g药量100 mm爆距下,9 mm织布冲击波的传播过程

    Figure  12.  Shock wave propagation of the 9 mm woven fabric under a 60 g charge and an 100 mm stand-off distance

    图  13  20 g 药量150 mm爆距下,6 mm织布变形和失效情况

    Figure  13.  Deformation and failure of the 6 mm fabric under a 20 g charge and an 150 mm stand-off distance

    图  14  20 g药量150 mm爆距下,6 mm织布吸能情况

    Figure  14.  Different layers’ energy absorptions of the 6 mm fabric under a 20 g charge and an 150 mm stand-off distance

    图  15  失效模式

    Figure  15.  Failure Mode

    图  16  60 g 药量100 mm爆距下,6 mm织布应变云图

    Figure  16.  Strain contours of the 6 mm fabric under a 60 g charge and an 100 mm stand-off distance

    图  17  不同厚度的织布中心点位移时程曲线

    Figure  17.  Displacement time histories of fabrics with different thicknesses

    图  18  9 mm织布未破坏层位移时程曲线

    Figure  18.  Displacement time histories of fabrics without failure

    图  19  不同厚度织布的失效模式

    Figure  19.  Failure modes of fabrics with different thicknesses

    图  20  [(0/90)(90/0)(±45)($ \mp $45)]n铺层织布

    Figure  20.  The [(0/90)(90/0)(±45)($ \mp $45)]n stacking sequence

    图  21  0.08 ms不同铺层角度织布应力云图

    Figure  21.  Stress contours of fabrics with different stacking angles at 0.08 ms

    图  22  不同铺层方式的能量吸收对比

    Figure  22.  Energy absorption comparison of different stacking sequences

    图  23  [(0/90)(90/0)(±45)($ \mp $45)]n铺层失效

    Figure  23.  Failure of the [(0/90)(90/0)(±45)($ \mp $45)]n fabric

    表  1  芳纶织布的主要参数指标

    Table  1.   Parameters of the aramid fabric

    area density ρa / (g/m2)yarn linear density D/ texthickness T/ mmyarn cross-sectional area C/ mm2fabric density R/(root/10 cm)
    217111.10.310.15794
    下载: 导出CSV

    表  2  准静态拉伸试验矩阵

    Table  2.   Quasi-static tensile test matrix

    test typedirectiontensile rate VT /(mm/min)quantity
    quasi-static
    warp203
    fill203
    下载: 导出CSV

    表  3  动态拉伸试验矩阵

    Table  3.   The dynamic tensile test matrix

    test №.test typedirectionstrain rate $\dot \varepsilon $/ s−1
    1 dynamic


    warp


    474
    2 512
    3 660
    4 724
    下载: 导出CSV

    表  4  材料模型参数输入值

    Table  4.   Material model parameters

    variabledescriptionunitvalue
    RO density g/mm3 0.000 7
    EA modulus of elasticity in the warp direction GPa 32
    EB modulus of elasticity in the fill direction GPa 30
    EACRF factor for the crimp region modulus of elasticity in the warp direction 0.28
    EBCRF factor for the crimp region modulus of elasticity in the fill direction 0.21
    EACRP crimp strain in the warp direction 0.003 1
    EBCRP crimp strain in the fill direction 0.004 3
    EASF factor for the post-peak region modulus of elasticity in the warp direction −5.24
    EBSF factor for the post-peak region modulus of elasticity in the fill direction −4.67
    EAMAX strain at the peak stress in the warp direction 0.034
    EBMAX strain at the peak stress in the fill direction 0.034
    SIGPOST stress value in the post-peak region where nonlinear behavior begins MPa 70
    C strain rate parameter s−1 0.5
    P strain rate parameter 3.0
    DFAC damage factor 0.3
    EMAX erosion strain of the element 0.3
    EAFAIL erosion strain in the warp direction 0.2
    EBFAIL erosion strain in the fill direction 0.2
    下载: 导出CSV

    表  5  试验和数值分析结果对比

    Table  5.   Comparison of test and numerical analysis results

    test №.
    number of fabric layers
    initial velocity ${V_{\rm{i}}}$ /(m/s)
    residual velocity ${V_{\rm{r}}}$ /(m/s)absorbed energy percent $\Delta E$ /%${\delta _{{\rm{AEPD}}}}$/%
    testsimulationtestsimulation
    1 2 137.4 130.4 121 9.93 22.4 −12.47
    2 4 129.8 106.0 112 33.3 25.5 7.8
    3 6 133.8 85.8 71.6 58.9 71.4 −12.5
    4 8 131.8 0 0 1 1 0
    5 6 122.0 22.27 15.6 96.7 98.4 −1.7
    6 6 152.4 103.8 98.5 53.6 58.2 −4.6
    下载: 导出CSV

    表  6  TNT材料参数

    Table  6.   Material properties of TNT

    variablevalue
    density ρTNT/( kg/m3)1 630
    detonation velocity ${V_{\rm{D} } }/\rm{(m/s)}$6 930
    Chapman-Jouget pressure ${p_{ {\rm{C} }{\text{-} }{\rm{J} } } } /\rm{GPa}$21
    A/GPa3 740
    B/GPa3.74
    R14.15
    R20.9
    ω0.35
    E0/(MJ/m3)6 000
    下载: 导出CSV

    表  7  空气材料参数

    Table  7.   Material properties of air

    variablevalue
    density ρa /( kg/m3)1.29
    C40.4
    C50.4
    E0 /(MJ/m3)0.25
    V01
    下载: 导出CSV

    表  8  数值分析矩阵

    Table  8.   The matrix of numerical analysis

    simulation №.charge M/gdistance S/mmfabric thickness T/mm
    1201503
    26
    39
    4601006
    59
    612
    下载: 导出CSV
  • [1] KERBER A, MOURITZ A P. Explosive blast damage resistance of three-dimensional textile composites[J]. Composites, Part A: Applied Science and Manufacturing, 2017, 100: 170-182. doi: 10.1016/j.compositesa.2017.05.005
    [2] GARGANO A, PINGKARAWAT K, BLACKLOCK M. Comparative assessment of the explosive blast performance of carbon and glass fibre-polymer used in naval ship structures[J]. Composite Structures, 2017, 171(1): 306-316.
    [3] HUA Y, AKULA P K, GU L X. Experimental and numerical investigation of carbon fiber sandwich panels subjected to blast loading[J]. Composites (Part B): Engineering, 2014, 56: 456-463. doi: 10.1016/j.compositesb.2013.08.070
    [4] BAŞTÜRK S, UYANIK H, KAZANCI Z. Nonlinear damped vibrations of a hybrid laminated composite plate subjected to blast load[J]. Procedia Engineering, 2014, 88: 18-25. doi: 10.1016/j.proeng.2014.11.121
    [5] HAGHI R, BEHJAT B, YAZDANI M. Numerical investigation of composite structures under blast loading[J]. Journal of Materials and Environmental Science, 2017, 8: 2231-2237.
    [6] LI J T, HUANG C, MA T. Numerical investigation of composite laminate subjected to combined loadings with blast and fragments[J]. Composite Structures, 2019, 214: 335-347. doi: 10.1016/j.compstruct.2019.02.019
    [7] LANGDON G S, CANTWELL W J, GUAN Z W, et al. The response of polymeric composite structures to air-blast loading: a state-of-the-art[J]. International Materials Reviews, 2014, 59: 159-77. doi: 10.1179/1743280413Y.0000000028
    [8] PORFIRI M, GUPTA N. A Review of Research on Impulsive Loading of Marine Composites, Major Accomplishments in Composite Materials and Sandwich Structures[M]. Dordrecht: Springer, 2009.
    [9] MOURITZ A P. Advances in understanding the response of fibre-based polymer composites to shock waves and explosive blasts[J]. Composites(Part A): Applied Science and Manufacturing, 2019, 125: 105502. doi: 10.1016/j.compositesa.2019.105502
    [10] GRUJICIC M, ARAKERE G, HE T. A ballistic material model for cross-plied unidirectional ultra-high molecular-weight polyethylene fiber-reinforced armor-grade composites[J]. Materials Science & Engineering A, 2008, 498(1/2): 231-241.
    [11] FALLAH A S, MICALLEF K, LANGDON G S. Dynamic response of Dyneema® HB26 plates to localised blast loading[J]. International Journal of Impact Engineering, 2014, 73: 91-100. doi: 10.1016/j.ijimpeng.2014.06.014
    [12] ZHANG B, NIAN X, JIN F. Failure analyses of flexible ultra-high molecular weight polyethylene (UHMWPE) fiber reinforced anti-blast wall under explosion[J]. Composite Structures, 2018, 184: 759-774. doi: 10.1016/j.compstruct.2017.10.037
    [13] DONATO Z, SAMUELE A, ALESSANDRO B. Textile-based luggage containers for onboard blast protection[J]. Sae International Journal of Aerospace, 2011, 4(2): 690-698. doi: 10.4271/2011-01-2517
    [14] FILIPPO M, MARIA M P, PAOLO V. Blast actions in aircrafts: an integrated methodology for designing protection devices[J]. Engineering Structures, 2018, 175: 895-911. doi: 10.1016/j.engstruct.2018.08.082
    [15] STAHLECKER Z, MOBASHER B, RAJAN S D. Development of reliable modeling methodologies for engine fan blade out containment analysis, part Ⅱ: finite element analysis[J]. International Journal of Impact Engineering, 2009, 36(3): 447-459. doi: 10.1016/j.ijimpeng.2008.08.004
    [16] ZHU D, VAIDYA A, MOBASHER B. Finite element modeling of ballistic impact on multi-layer Kevlar 49 fabrics[J]. Composites (Part B): Engineering, 2014, 56: 254-262. doi: 10.1016/j.compositesb.2013.08.051
    [17] COWPER G R, SYMONDS P S. Strain hardening and strain rate effect in the impact loading of cantilever beams: NR-064-406[R]. Providence: Brown University, 1957.
    [18] 冯振宇, 裴惠, 迟琪琳, 等. Kevlar织物软壁包容环抗冲击数值仿真分析研究[J]. 振动与冲击, 2020, 39(10): 15-23. (FENG Zhenyu, PEI Hui, CHI Qilin, et al. Investigation on the high speed impact numerical simulation of Kevlar fabrics soft-wall containment[J]. Vibration and Shock, 2020, 39(10): 15-23.(in Chinese)
    [19] REVILOCK D M, PEREIRA J M. Explicit finite element modeling of multilayer composite fabric for gas turbine engine containment systems, phase Ⅱ, part 2: ballistic impact testing: DOT/FAA/AR-08/37 P2[R]. Springfield, Virginia: National Technical Information Service (NTIS), 2009.
  • 加载中
图(23) / 表(8)
计量
  • 文章访问数:  453
  • HTML全文浏览量:  237
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 修回日期:  2021-04-29
  • 网络出版日期:  2021-12-07
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回