## 留言板

 引用本文: 罗优, 朱森林, 曹兵, 蒋陈娟. 河底和岸壁水流剪切应力“标准断面”法[J]. 应用数学和力学, 2021, 42(9): 915-923.
LUO You, ZHU Senlin, CAO Bing, JIANG Chenjuan. A “Standard Cross-Section” Method for the Calculation of Riverbed and Bank Shear Stresses[J]. Applied Mathematics and Mechanics, 2021, 42(9): 915-923. doi: 10.21656/1000-0887.420048
 Citation: LUO You, ZHU Senlin, CAO Bing, JIANG Chenjuan. A “Standard Cross-Section” Method for the Calculation of Riverbed and Bank Shear Stresses[J]. Applied Mathematics and Mechanics, 2021, 42(9): 915-923.

## 河底和岸壁水流剪切应力“标准断面”法

##### doi: 10.21656/1000-0887.420048

###### 通讯作者: 罗优(1985—), 男, 讲师, 博士(通讯作者. E-mail: luoyou@yzu.edu.cn).
• 中图分类号: O368|TV143

## A “Standard Cross-Section” Method for the Calculation of Riverbed and Bank Shear Stresses

• 摘要: 零剪切应力分割线法和分割线表观剪切应力法是计算河底和河岸水流剪切应力的两种常用方法.为简化分割线表观剪切应力经验表达式，提出了“动量传输平衡偏离”（momentum transferequilibrium deviation,MTED）假设，认为表观剪切应力可由分割线一侧单位时间动量传输与其平衡值的差值来表示.为了确定平衡值，提出了标准断面的概念，所有矩形或者梯形断面都有对应的标准断面.基于MTED假设和标准断面的概念，建立了分割线表观剪切力以及河底和河岸剪切力占总剪切力比重的计算表达式.利用不同实验的200多个数据对不同的计算方法进行了对比分析，结果表明：该文的方法有效改善了计算精度，适用范围广，适用于矩形和梯形断面，以及河岸与河底糙率相同或不同的情况.
•  [2]YUEN K W H. A study of boundary shear stress, flow resistance and momentum transfer in open channels with simple and compound trapezoidal cross sections[D]. PhD Thesis. Birmingham: University of Birmingham, 1989. RAJARATNAM N, MURALIDHAR D. Boundary shear stress distribution in rectangular open channels[J].La Houille Blanche,1969,1(6): 603-610. [3]CACQUERAY N D, HARAGREAVES D M, MORVAN H P. A computational study of shear stress in smooth rectangular channels[J].Journal of Hydraulic Research,2009,47(1): 50-57. [4]ANSARI K, MORVAN H P, HARGREAVES D M. Numerical investigation into secondary currents and wall shear in trapezoidal channels[J].Journal of Hydraulic Engineering,2011,137(4): 432-440. [5]KHODASHENAS S R, ABDERREZZAK K E K, PAQUIER A. Boundary shear stress in open channel flow: a comparison among six methods[J].Journal of Hydraulic Research,2008,46(5): 598-609. [6]KNIGHT D W, DEMETRIOU J D, HAMED M E. Boundary shear in smooth rectangular channels[J]. Journal of Hydraulic Engineering,1984,110(4): 405-422. [7]FLINTHAM T, CARLING P. The prediction of mean bed and wall boundary shear in uniform and compositely rough channels[C]//International Conference on River Regime, Hydraulics Research Limited.Wallingford, Oxon, UK, 1988. [8]KHOZANI Z S, BONAKDARI H, ZAJI A H. Using two soft computing methods to predict wall and bed shear stress in smooth rectangular channels[J].Applied Water Science,2017,7(7): 3973-3983. [9]MARTINEZ-VAZQUEZ P, SHARIFI S. Modelling boundary shear stress distribution in open channels using a face recognition technique[J].Journal of Hydroinformatics,2017,19(2): 157-172. [10]LEIGHLY J B. Toward a theory of the morphologic significance of turbulence in the flow of water in streams[J].Progress in Physical Geography,1932,6(1): 1-22. [11]KEULEGAN G H. Laws of turbulent flow in open channels[J].Journal of Research of the National Bureau of Standards,1938,21: 708-741. [12]EINSTEIN H A. Formulas for the transportation of bed load[J].Transactions of ASCE,1942,107(1): 561-597. [13]YANG S Q, LIM S Y, GUO J. Mechanism of energy transportation and turbulent flow in a 3D channel[J].Journal of Hydraulic Engineering,1999,125(3): 684-692. [14]YANG S Q, LIM S Y. Boundary shear stresses distributions in smooth rectangular open channel flows[J].Proceedings of the Institution of Civil Engineers: Water Maritime and Energy,1998,130(3): 163-173. [15]YANG S Q, LIM S Y. Boundary shear stress distributions in trapezoidal channels[J].Journal of Hydraulic Research,2005,43(1): 98-102. [16]HAN Y, YANG S Q, DHARMASIRI N, et al. Experimental study of smooth channel flow division based on velocity distribution[J].Journal of Hydraulic Engineering,2015,141(4): 06014025. [17]HAN Y, YANG S Q, SIVAKUMAR M, et al. Flow partitioning in rectangular open channel flow[J].Mathematical Problems in Engineering,2018,2018: 6491501. [18]YANG S Q, YU J X, WANG Y Z. Estimation of diffusion coefficients, lateral shear stress, and velocity in open channels with complex geometry[J].Water Resource Research,2004,40(5): W05202. DOI: 10.1029/2003WR002818. [19]SHIONO K, KNIGHT D W. Turbulent open-channel flows with variable depth across the channel[J].Journal of Fluid Mechanics,1991,222: 617-646. [20]GUO J, JULIEN P Y. Shear stress in smooth rectangular open-channel flows[J].Journal of Hydraulic Engineering,2005,131(1): 30-37. [21]KABIRI-SAMANI A, FARSHI F, CHAMANI M R. Boundary shear stress in smooth trapezoidal open channel flows[J].Journal of Hydraulic Engineering,2013,139(2): 205-212. [22]JAVID S, MOHAMMADI M. Boundary shear stress in a trapezoidal channel[J].International Journal of Engineering,2012,25(4): 323-332. [23]WORMLEATON P R, MERRETT D J. An improved method of calculation for steady uniform flow in prismatic main channel/flood plain sections[J].Journal of Hydraulic Research,1990,28(2): 157-174. [24]PRINOS P, TOWNSEND R D. Comparison of methods for predicting discharge in compound open channels[J].Advances in Water Resources,1984,7(4): 180-187. [25]MORETA P J, MARTIN-VIDE J P. Apparent friction coefficient in straight compound channels[J].Journal of Hydraulic Research,2010,48(2): 169-177. [26]CHEN Z, CHEN Q, JIANG L. Determination of apparent shear stress and its application in compound channels[J].Procedia Engineering,2016,154: 459-466. [27]BRUNDRETT E, BAINES W D. The production and diffusion of vorticity in duct flow[J].Journal of Fluid Mechanics,1964,19: 375-394. [28]NEZU I. Turbulent structures in open-channel flows[D]. PhD Thesis. Japan: Kyoto University, 1977. [29]HUTHOFF F, ROOS P C, AUGUSTIJIN D C, et al. Interacting divided channel method for compound channel flow[J]. Journal of Hydraulic Engineering,2008,134(8): 1158-1165. [30]YANG K, LIU X, CAO S, et al. Stage-discharge prediction in compound channels[J].Journal of Hydraulic Engineering,2014,140(4): 06014001. [31]TANG X. A new apparent shear stress-based approach for predicting discharge in uniformly roughened straight compound channels[J].Flow Measurement and Instrumentation,2019,65: 280-287. [32]YANG Z, GAO W, HUAI W. Estimation of discharge in compound channels based on energy concept[J].Journal of Hydraulic Research,2012,50(1): 105-113. [33]TANG X. An improved method for predicting discharge of homogeneous compound channels based on energy concept[J].Flow Measurement and Instrumentation,2017,57: 57-63. [34]EINSTEIN H A. The bedload function for sediment transportation in open channel flows: 1026[R]. Technical Bulletin, 1950. [35]SILVA D A M F, BOLISETTI T. A method for the formulation of Reynolds number functions[J].Canadian Journal of Civil Engineering,2000,27(4): 829-833. [36]SECKIN G, SECKIN N, YURTAL R. Boundary shear stress analysis in smooth rectangular channels[J].Canadian Journal of Civil Engineering,2006,33(3): 336-342. [37]GHOSH S N, ROY N. Boundary shear distribution in open channel flow[J].Journal of the Hydraulics Division,1970,96(4): 967-994. [38]KNIGHT D W, MACDONALD J A. Hydraulic resistance of artificial strip roughness[J].Journal of the Hydraulics Division,1979,105(6): 675-690. [39]KNIGHT D W, MACDONALD J A. Open channel flow with varying bed roughness[J].Journal of the Hydraulics Division,1979,105(9): 1167-1183. [40]KNIGHT D W. Boundary shear in smooth and rough channels[J].Journal of the Hydraulics Division,1981,107(7): 839-851. [41]ALHAMID A I. Boundary shear stress and velocity distribution in differentially roughened trapezoidal open channels[D]. PhD Thesis. Birmingham: University of Birmingham, 1991.

##### 计量
• 文章访问数:  211
• HTML全文浏览量:  40
• PDF下载量:  26
• 被引次数: 0
##### 出版历程
• 收稿日期:  2021-02-22
• 修回日期:  2021-06-25
• 网络出版日期:  2021-09-29

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈