## 留言板

Keller-Segel趋化模型解的全局存在性和爆破时间的下界估计

 引用本文: 李远飞. Keller-Segel趋化模型解的全局存在性和爆破时间的下界估计 [J]. 应用数学和力学，2022，43（6）：1-10
Yuanfei LI. Global Existence of Solutions and Lower Bound Estimation of Blow-Up Time for Keller-Segel Chemotaxis Model[J]. Applied Mathematics and Mechanics. doi: 10.21656/1000-0887.420109
 Citation: Yuanfei LI. Global Existence of Solutions and Lower Bound Estimation of Blow-Up Time for Keller-Segel Chemotaxis Model[J]. Applied Mathematics and Mechanics.

• 中图分类号: O178

## Global Existence of Solutions and Lower Bound Estimation of Blow-Up Time for Keller-Segel Chemotaxis Model

• 摘要: 考虑了一个描述趋化细胞迁移的宏观非线性Keller-Segel模型, 其中该模型的存在区域$\varOmega\subset\mathbb{R}^N(N\geqslant2)$是有界的凸区域。利用能量估计的方法得到了$\varOmega\subset\mathbb{R}^3$上解的全局存在性。如果方程中的参数满足一定约束条件，证明了当$N=3$$N=2$时可能的爆破时间的下界。
•  [1] CIEŚLAK T, STINNER C. Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions[J]. Journal of Differential Equations, 2012, 252(29): 5832-5851. [2] WEISSLER F B. Local existence and nonexistence for semilinear parabolic equations in Lp[J]. Indiana University Mathematics Journal, 1980, 29(1): 79-102. [3] WEISSLER F B. Existence and nonexistence of global solutions for a heat equation[J]. Israel Journal of Mathematics, 1981, 38: 29-40. [4] 李远飞, 肖胜中, 陈雪姣. 非线性边界条件下具有变系数的热量方程解的存在性及爆破现象[J]. 应用数学和力学, 2021, 42(1): 92-101. (LI Yuanfei, XIAO Shengzhong, CHEN Xuejiao. Existence and blow-up phenomena of solutions to heat equations with variable coefficients under nonlinear boundary conditions[J]. Applied Mathematics and Mechanics, 2021, 42(1): 92-101.(in Chinese) [5] 李远飞. 非线性边界条件下高维抛物方程解的全局存在性及爆破现象[J]. 应用数学学报, 2019, 42(6): 721-735. (LI Yuanfei. Blow-up phenomena and global existences for higher-dimensional parabolic equations under nonlinear boundary conditions[J]. Acta Mathematicae Applicatae Sinica, 2019, 42(6): 721-735.(in Chinese) [6] GRILLO G, MURATORI M, PUNZO F. Blow-up and global existence for the porous medium equation with reaction on a class of Cartan-Hadamard manifolds[J]. Journal of Differential Equations, 2019, 266(7): 4305-4336. [7] 李远飞. Robin边界条件下更一般化的非线性抛物问题全局解的存在性和爆破[J]. 应用数学学报, 2018, 41(2): 257-267. (LI Yuanfei. Blow-up and global existence of the solution to some more general nonlinear parabolic problems with Robin boundary conditions[J]. Acta Mathematicae Applicatae Sinica, 2018, 41(2): 257-267.(in Chinese) [8] JIANG J, WU H, ZHENG S G. Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant[J]. Journal of Differential Equations, 2018, 264(8): 5432-5464. [9] DING J T, KOU W. Blow-up solutions for reaction diffusion equations with nonlocal boundary conditions[J]. Journal of Mathematical Analysis and Applications, 2019, 470(1): 1-15. [10] LIU Y. Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions[J]. Mathematical and Computer Modelling, 2013, 57(3/4): 926-931. [11] HAN Y Z, GAO W J, SUN Z, et al. Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy[J]. Computers and Mathematics With Applications, 2018, 76(10): 2477-2483. [12] 许然, 田娅, 秦瑶. 一类反应扩散方程的爆破时间下界估计[J]. 应用数学和力学, 2021, 42(1): 113-122. (XU Ran, TIAN Ya, QIN Yao. Lower bounds of the blow-up time for a class of reaction diffusion equations[J]. Applied Mathematics and Mechanics, 2021, 42(1): 113-122.(in Chinese) [13] YANG X, ZHOU Z F. Blow-up problems for the heat equation with a local nonlinear Neumann boundary condition[J]. Journal of Differential Equations, 2016, 261(5): 2738-2783. [14] PAYNE L E, SONG J C. Blow-up and decay criteria for a model of chemotaxis[J]. Journal of Mathematical Analysis and Applications, 2010, 367(1): 1-6. [15] 李远飞, 雷彩明. 具有非线性边界条件的趋化性模型解的爆破时间下界估计[J]. 应用数学学报, 2015, 38(6): 1097-1102. (LI Yuanfei, LEI Caiming. Lower bound of the blow-up time for a model of chemotaxis with nonlinear boundary condition[J]. Acta Mathematicae Applicatae Sinica, 2015, 38(6): 1097-1102.(in Chinese) [16] PAYNE L E, SONG J C. Lower bounds for blow-up in a model of chemotaxis[J]. Journal of Mathematical Analysis and Applications, 2012, 385(2): 672-676. [17] LI J R, ZHENG S N. A lower bound for blow-up time in a fully parabolic Keller-Segel system[J]. Applied Mathematics Letters, 2013, 26(4): 510-514. [18] 李远飞. Keller-Segel 抛物系统解的爆破现象 [J]. 应用数学学报, 2017, 40(5): 692-701. (LI Yuanfei. Blow-up phenomena for the solutions to a fully parabolic Keller-Segel system[J]. Acta Mathematicae Applicatae Sinica, 2017, 40(5): 692-701.(in Chinese) [19] PAYNE L E, PHILIPPIN G A, VERNIERPIRO S. Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, Ⅱ[J]. Nonlinear Analysis, 2010, 73(4): 971-978. [20] 李远飞, 王燕, 骆世广. 齐次Neumann边界条件非线性抛物方程解的爆破时间的下界[J]. 数学的实践与认识, 2015, 45(16): 209-216. (LI Yuanfei, WANG Yan, LUO Shiguang. Lower bounds for blow-up time in nonlinear parabolic problems under Neumann conditions[J]. Mathematics in Practice and Theory, 2015, 45(16): 209-216.(in Chinese) [21] 李远飞. 海洋动力学中二维粘性原始方程组解对热源的收敛性[J]. 应用数学和力学, 2020, 41(3): 339-352. (LI Yuanfei. Convergence results on heat source for 2D viscous primitive equations of ocean dynamics[J]. Applied Mathematics and Mechanics, 2020, 41(3): 339-352.(in Chinese) [22] LIU B C, DONG M Z. Globally bounded solutions in a Chemotaxis model of quasilinear parabolic type[J]. Chinese Quarterly Journal of Mathematics, 2019, 34(3): 274-282.

##### 计量
• 文章访问数:  89
• HTML全文浏览量:  44
• PDF下载量:  6
• 被引次数: 0
##### 出版历程
• 收稿日期:  2021-04-25
• 录用日期:  2021-07-08
• 修回日期:  2021-07-08
• 网络出版日期:  2020-06-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈