留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蜂窝夹芯结构用连接接头抗冲击性能研究

张智扬 赵振宇 任建伟 高辉遥

张智扬, 赵振宇, 任建伟, 高辉遥. 蜂窝夹芯结构用连接接头抗冲击性能研究[J]. 应用数学和力学, 2024, 45(8): 1024-1036. doi: 10.21656/1000-0887.450131
引用本文: 张智扬, 赵振宇, 任建伟, 高辉遥. 蜂窝夹芯结构用连接接头抗冲击性能研究[J]. 应用数学和力学, 2024, 45(8): 1024-1036. doi: 10.21656/1000-0887.450131
ZHANG Zhiyang, ZHAO Zhenyu, REN Jianwei, GAO Huiyao. Study on Impact Resistance of Connection Joints for Honeycomb Sandwich Structures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1024-1036. doi: 10.21656/1000-0887.450131
Citation: ZHANG Zhiyang, ZHAO Zhenyu, REN Jianwei, GAO Huiyao. Study on Impact Resistance of Connection Joints for Honeycomb Sandwich Structures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1024-1036. doi: 10.21656/1000-0887.450131

蜂窝夹芯结构用连接接头抗冲击性能研究

doi: 10.21656/1000-0887.450131
基金项目: 

国家自然科学基金 11972185

国家自然科学基金 12002156

详细信息
    作者简介:

    张智扬(1997—),男,博士生(E-mail: zhangzy9712@163.com)

    通讯作者:

    赵振宇(1986—),男,副研究员,博士(通讯作者. E-mail: zhenyu_zhao@nuaa.edu.com.cn)

  • 中图分类号: O347.1

Study on Impact Resistance of Connection Joints for Honeycomb Sandwich Structures

  • 摘要: 夹层结构在工程领域的应用广泛,但其连接装配问题却日益突出,尤其是面临强动载荷下的作战装备,如何设计连接接头以提升结构的可靠性及维修性,是目前研究的热点. 针对蜂窝夹芯防护结构在典型作战环境中的连接装配问题,设计了一种由方管锁定的快速组装连接接头,并通过泡沫子弹冲击实验以获得连接结构在不同冲量下的动态响应,随后采用有限元方法对冲击试验进行了模拟,仿真结果与实验结果吻合度较好. 在此基础上,利用该有限元模型进一步探讨了方管壁厚、连接单元宽度等几何参数对该结构在泡沫子弹冲击载荷作用下的峰值挠度的影响. 结果表明,较薄方管壁厚(tt/tf≤0.375)使得连接结构容易陷入方管压溃的失效模式导致其峰值挠度显著增大,而较小的连接单元宽度(2a/W≤0.267)将导致面板抗拉强度下降,进而削弱连接结构抗冲击性能. 此外,随着连接单元宽度的不断增加,连接结构的峰值挠度呈现先减小后增大的趋势,这是由于连接单元的有效横截面积与机械互锁接触面积之间存在竞争机制. 当前研究表明,这种快速组装连接接头能有效抵御动态冲击载荷,具有抗冲击吸能、便于维护更换的特点,有望应用于各型主战装备防护结构的连接,为夹层连接结构的抗冲击设计提供参考.
  • 图  1  连接结构试样

    Figure  1.  The connection structure specimen

    图  2  连接结构试样制备流程示意图

    Figure  2.  The preparation process of the connection structure specimen

    图  3  一级轻气炮示意图[31]

    Figure  3.  Schematic diagram of the 1st-level light gas gun[31]

    图  4  泡沫子弹冲击连接结构试样的有限元模型

    Figure  4.  The finite element model for the foam projectile impact connection structure specimen

    图  5  84.7 m/s工况下仿真模型的网格无关性分析

    Figure  5.  Grid independence analysis of the simulation model under 84.7 m/s

    图  6  不同冲击速度下连接结构试样的跨中挠度-时程曲线

    Figure  6.  Mid-span deflection-time curves of connection structure specimens at different impact velocities

    图  7  连接结构试样冲击试验的结构变形演化图

    Figure  7.  Structural deformation evolutions of connection structure specimen impact tests

    图  8  84.7 m/s冲击速度下的连接结构试样的实验和仿真结果对比

    Figure  8.  Comparison of experiment and simulation results of connection structure specimens at an 84.7 m/s impact velocity

    图  9  84.7 m/s冲击速度下结构变形演化的有限元仿真结果

    Figure  9.  Finite element simulation results of structural deformation evolution at an 84.7 m/s impact velocity

    图  10  三种典型接头宽度下,试样的无量纲方管连接件壁厚和无量纲峰值跨中挠度关系

    Figure  10.  The relationships between demensionless square tube connector wall thicknesses and dimensionless peak mid-span deflections of the specimen under 3 typical joint widths

    图  11  方管压溃失效,对应接头几何尺寸参数2a/W=0.50, tt/tf=0.25

    Figure  11.  The square tube collapse failure, corresponding joint geometric parameters 2a/W=0.50, tt/tf=0.25

    图  12  三种典型方管连接件壁厚尺寸下,试样的无量纲齿根宽度和无量纲峰值跨中挠度关系

    Figure  12.  The relationships between dimensionless root widths and dimensionless peak mid-span deflections of the specimen under 3 typical square tube connector wall thicknesses

    图  13  84.7 m/s冲击速度下,有、无方管连接试样的无量纲化齿根宽度与无量纲化峰值跨中挠度关系

    Figure  13.  The relationships between the dimensionless root widths and the dimensionless peak mid-span deflections of the specimen with and without square the tube connector at an 84.7 m/s impact velocity

    图  14  84.7 m/s冲击速度下,无方管连接试样发生了分离,对应接头几何尺寸参数2a/W=0.50, tt/tf=0.75

    Figure  14.  At the impact velocity of 84.7 m/s, the separated specimen and the corresponding joint geometric parameters 2a/W=0.50, tt/tf=0.75

    表  1  试样各尺寸参数

    Table  1.   The size parameters of the specimen

    parameter value
    connection sample length L/mm 300
    clamping end length l/mm 35
    sample width W/mm 60
    panel thickness tf/mm 2
    honeycomb core height h/mm 14
    honeycomb core wall thickness tc/mm 0.05
    honeycomb core side length Lc/mm 2
    square tube wall thickness tt/mm 1.5
    diameter opening D/mm 11
    root width a/mm 12
    addendum width b/mm 18
    下载: 导出CSV

    表  2  模型中所涉及的材料的Johnson-Cook材料本构参数[19, 32-33]

    Table  2.   Johnson-Cook material constitutive parameters of the materials involved in the model[19, 32-33]

    parameter 304 stainless steel Q235B steel AA3003-H18 aluminum alloy
    density ρ/(kg·m-3) 7 800 7 800 2 680
    elasticity modulus E/GPa 193 200 67.6
    Poisson’s ratio ν 0.3 0.33 0.33
    initial yield stress A/MPa 310 293.8 214
    hardening constant B/MPa 1 000 230.2 143
    hardening exponent n 0.65 0.578 0.36
    reference strain rate $\dot{\varepsilon}_0 $/s-1 0.001 0.002 1 1
    strain rate constant C 0.034 0.065 2 0.015
    melting temperature TM/K 1 800 1 793 893
    thermal softening exponent m 1.05 0.706 0
    specific heat θ/(J·kg-1·K-1) 450 440 893
    下载: 导出CSV

    表  3  泡沫铝的基本性能参数

    Table  3.   Basic performance parameters of the aluminum foam

    parameter value
    density ρp/(kg·m-3) 378
    elasticity modulus Ep/GPa 0.38
    Poisson’s ratio νp 0.45
    compressive yield stress ratio R 1.732
    下载: 导出CSV

    表  4  泡沫铝的Crushable Foam模型参数

    Table  4.   Crushable Foam model parameters of the aluminum foam

    stress in uniaxialcompression σaxial/MPa 3.457 4.120 4.540 5.186 5.538 6.234 7.086 7.313 7.486 7.629 8.422 11.55
    plastic strain in uniaxialcompression εaxialpl 0 0.042 0.084 0.126 0.206 0.262 0.310 0.349 0.417 0.456 0.542 0.674
    下载: 导出CSV

    表  5  连接结构试样的冲击试验数据

    Table  5.   Impact experiment data of connection structure specimens

    specimen number foam projectile mass mp/g initial projectile velocityv0/(m/s) initial unit area impulseI0/(kPa·s) peak mid-span deflectionδm/mm
    1# 107.4 84.7 3.44 34.7
    2# 108.0 100.7 4.12 35.5
    3# 108.3 117.4 4.81 38.9
    4# 108.1 154.7 6.33 undetectable
    下载: 导出CSV
  • [1] PAIK J K, THAYAMBALLI A K, KIM G S. The strength characteristics of aluminum honeycomb sandwich panels[J]. Thin-Walled Structures, 1999, 35(3): 205-231. doi: 10.1016/S0263-8231(99)00026-9
    [2] SUN G, CHEN D, HUO X, et al. Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels[J]. Composite Structures, 2018, 184: 110-124. doi: 10.1016/j.compstruct.2017.09.025
    [3] REDDY B G V, SHARMA K V, REDDY T Y. Deformation and impact energy absorption of cellular sandwich panels[J]. Materials & Design, 2014, 61: 217-227.
    [4] GIBSON L, ASHBY M F. Cellular Solids Structure and Properties[M]. Cambridge: Cambridge University Press, 1999.
    [5] ADHIKARI S. The in-plane mechanical properties of highly compressible and stretchable 2D lattices[J]. Composite Structures, 2021, 272: 114167. doi: 10.1016/j.compstruct.2021.114167
    [6] 李金矿, 万文玉, 刘闯. 形状记忆合金蜂窝结构抗冲击性能研究[J]. 应用数学和力学, 2024, 45(1): 34-44.

    LI Jinkuang, WAN Wenyu, LIU Chuang. Study on impact resistance of shape memory alloy honeycomb structures[J]. Applied Mathematics and Mechanics, 2024, 45(1): 34-44. (in Chinese)
    [7] DAFANG W, LIMING Z, BING P, et al. Thermal protection performance of metallic honeycomb core panel structures in non-steady thermal environments[J]. Experimental Heat Transfer, 2016, 29(1): 53-77. doi: 10.1080/08916152.2014.940433
    [8] HUANG W C, NG C F. Sound insulation improvement using honeycomb sandwich panels[J]. Applied Acoustics, 1998, 53(1/3): 163-177.
    [9] NG C F, HUI C K. Low frequency sound insulation using stiffness control with honeycomb panels[J]. Applied Acoustics, 2008, 69(4): 293-301. doi: 10.1016/j.apacoust.2006.12.001
    [10] PALOMBA G, EPASTO G, CRUPI V, et al. Single and double-layer honeycomb sandwich panels under impact loading[J]. International Journal of Impact Engineering, 2018, 121: 77-90. doi: 10.1016/j.ijimpeng.2018.07.013
    [11] XIE S, JING K, ZHOU H, et al. Mechanical properties of Nomex honeycomb sandwich panels under dynamic impact[J]. Composite Structures, 2020, 235: 111814. doi: 10.1016/j.compstruct.2019.111814
    [12] ZHANG D, FEI Q, ZHANG P. Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor[J]. Composite Structures, 2017, 168: 633-645. doi: 10.1016/j.compstruct.2017.02.053
    [13] GABRIELE I, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs[J]. Composite Structures, 2018, 183: 242-261. doi: 10.1016/j.compstruct.2017.03.018
    [14] SAWANT R, PATEL M, PATEL S. Numerical analysis of honeycomb sandwich panels under blast load[J]. Materials Today: Proceedings, 2023, 87: 67-73. doi: 10.1016/j.matpr.2022.09.547
    [15] YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact: an experimental study[J]. International Journal of Impact Engineering, 2015, 75: 100-109. doi: 10.1016/j.ijimpeng.2014.07.019
    [16] WEN H M, REDDY T Y, REID S R, et al. Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading[J]. Key Engineering Materials, 1998, 143: 501-552.
    [17] MENNA C, ZINNO A, ASPRONE D, et al. Numerical assessment of the impact behavior of honeycomb sandwich structures[J]. Composite Structures, 2013, 106: 326-339. doi: 10.1016/j.compstruct.2013.06.010
    [18] EBRAHIMI H, GHOSH R, MAHDI E, et al. Honeycomb sandwich panels subjected to combined shock and projectile impact[J]. International Journal of Impact Engineering, 2016, 95: 1-11. doi: 10.1016/j.ijimpeng.2016.04.009
    [19] SUN G, CHEN D, WANG H, et al. High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations[J]. International Journal of Impact Engineering, 2018, 122: 119-136. doi: 10.1016/j.ijimpeng.2018.08.007
    [20] RATHBUN H J, RADFORD D D, XUE Z, et al. Performance of metallic honeycomb-core sandwich beams under shock loading[J]. International Journal of Solids and Structures, 2006, 43(6): 1746-1763. doi: 10.1016/j.ijsolstr.2005.06.079
    [21] DHARMASENA K P, WADLEY H N G, XUE Z, et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading[J]. International Journal of Impact Engineering, 2008, 35(9): 1063-1074. doi: 10.1016/j.ijimpeng.2007.06.008
    [22] CASTANIÉ B, BOUVET C, GINOT M. Review of composite sandwich structure in aeronautic applications[J]. Composites (Part C): Open Access, 2020, 1: 100004. doi: 10.1016/j.jcomc.2020.100004
    [23] 张杜江, 赵振宇, 褚庆国, 等. 浅埋爆炸下考虑乘员安全的防雷底板设计理论模型[J/OL]. 应用力学学报, 2024[2024-06-09]. https://kns.cnki.net/kcms/detail/61.1112.o3.20221124.1404.006.html.

    ZHANG Dujiang, ZHAO Zhenyu, CHU Qingguo, et al. Theoretical model of armored vehicle bottom plate subjected to detonation of shallow-buried explosives, with occupant safety considered[J/OL]. Chinese Journal of Applied Mechanics, 2024[2024-06-09]. https://kns.cnki.net/kcms/detail/61.1112.o3.20221124.1404.006.html. (in Chinese)
    [24] CRUPI V, EPASTO G, GUGLIELMINO E. Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading[J]. International Journal of Impact Engineering, 2012, 43: 6-15. doi: 10.1016/j.ijimpeng.2011.12.002
    [25] ELGEWELY E. 3D reconstruction of furniture fragments from the ancient town of karanis[J]. Studies in Digital Heritage, 2017, 1(2): 409-427. doi: 10.14434/sdh.v1i2.23340
    [26] KOZAK J. Selected problems on application of steel sandwich panels to marine structures[J]. Polish Maritime Research, 2009, 16(4): 9-15.
    [27] LIU Z, MAJUMDAR P K, COUSINS T E, et al. Development and evaluation of an adhesively bonded panel-to-panel joint for a FRP bridge deck system[J]. Journal of Composites for Construction, 2008, 12(2): 224-233.
    [28] ZHOU A, KELLER T. Joining techniques for fiber reinforced polymer composite bridge deck systems[J]. Composite Structures, 2005, 69(3): 336-345.
    [29] BANHART J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46(6): 559-632.
    [30] SCHVLER P, FISCHER S F, BVHRIG-POLACZEK A, et al. Deformation and failure behaviour of open cell Al foams under quasistatic and impact loading[J]. Materials Science and Engineering: A, 2013, 587: 250-261.
    [31] 张杜江, 赵振宇, 贺良, 等. 基于Johnson-Cook本构模型的高强度装甲钢动态力学性能参数标定及验证[J]. 兵工学报, 2022, 43(8): 1966-1976.

    ZHANG Dujiang, ZHAO Zhenyu, HE Liang, et al. Calibration and verification of dynamic mechanical properties of high-strength armored steel based on Johnson-Cook constitutive model[J]. Acta Armamentarii, 2022, 43(8): 1966-1976. (in Chinese)
    [32] NAHSHON K, PONTIN M, EVANS A, et al. Dynamic shear rupture of steel plates[J]. Journal of Mechanics of Materials and Structures, 2007, 2(10): 2049-2066.
    [33] 郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系[J]. 爆炸与冲击, 2018, 38(4): 804-810.

    GUO Zitao, GAO Bin, GUO Zhao, et al. Dynamic constitutive relation based on J-C model of Q235 steel[J]. Explosion and Shock Waves, 2018, 38(4): 804-810. (in Chinese)
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  76
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 修回日期:  2024-06-09
  • 刊出日期:  2024-08-01

目录

    /

    返回文章
    返回