留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维体积分数可变的复合材料梁计及转动惯量和剪切变形时的固有频率

Y·比德几里里 A·图斯 H·M·贝拉巴赫 I·米查贝 E·A·阿达·贝达牙 S·贝奈沙

Y·比德几里里, A·图斯, H·M·贝拉巴赫, I·米查贝, E·A·阿达·贝达牙, S·贝奈沙. 纤维体积分数可变的复合材料梁计及转动惯量和剪切变形时的固有频率[J]. 应用数学和力学, 2009, 30(6): 667-676. doi: 10.3879/j.issn.1000-0887.2009.06.006
引用本文: Y·比德几里里, A·图斯, H·M·贝拉巴赫, I·米查贝, E·A·阿达·贝达牙, S·贝奈沙. 纤维体积分数可变的复合材料梁计及转动惯量和剪切变形时的固有频率[J]. 应用数学和力学, 2009, 30(6): 667-676. doi: 10.3879/j.issn.1000-0887.2009.06.006
Y. Bedjilili, A. Tounsi, H. M. Berrabah, I. Mechab, E. A. Adda Bedia, S. Benaissa. Natural Frequencies of Composite Beams Having Variable Fiber Volume Fraction Including Rotary Inertia and Shear Deformation[J]. Applied Mathematics and Mechanics, 2009, 30(6): 667-676. doi: 10.3879/j.issn.1000-0887.2009.06.006
Citation: Y. Bedjilili, A. Tounsi, H. M. Berrabah, I. Mechab, E. A. Adda Bedia, S. Benaissa. Natural Frequencies of Composite Beams Having Variable Fiber Volume Fraction Including Rotary Inertia and Shear Deformation[J]. Applied Mathematics and Mechanics, 2009, 30(6): 667-676. doi: 10.3879/j.issn.1000-0887.2009.06.006

纤维体积分数可变的复合材料梁计及转动惯量和剪切变形时的固有频率

doi: 10.3879/j.issn.1000-0887.2009.06.006
详细信息
  • 中图分类号: O343.8

Natural Frequencies of Composite Beams Having Variable Fiber Volume Fraction Including Rotary Inertia and Shear Deformation

  • 摘要: 研究纤维体积分数沿着厚度可变的对称复合材料梁的振动.分析中考虑了一阶剪切变形和转动惯量.该解法可适应任意边界条件.纤维体积分数沿着梁的厚度方向以坐标的m幂次多项式形式连续渐变.可变的纤维体积分数,在对称复合材料梁中形成功能梯度材料(FGM),会引起梁的某些振动特性的改变.结果显示,剪切变形、纤维体积分数和边界条件,对复合材料梁的固有频率和振型的影响.
  • [1] Zinenkiewicz O C,Taylor R L.The Finite Element Method[M].Vol 1.Singapore:McGraw-Hill,1989.
    [2] Miller A K,Adams D F. An analytic means of determining the flexural and torsional resonant frequencies of generally orthotropic beams[J].Journal of Sound and Vibration,1975,41(4):433-439. doi: 10.1016/S0022-460X(75)80107-6
    [3] Vinson J R,Sierakowski R L.The Behavior of Structures Composed of Composite Materials[M].Dordrecht, The Netherlands:Martinus Nijhoff,1986,141.
    [4] Timoshenko S P. On the correction for shear of differential equation for transverse vibration of prismatic bars[J].Philos Mag Ser 6,1921,41(245):744-746. doi: 10.1080/14786442108636264
    [5] Timoshenko S P. On the transverse vibration of bars of uniform cross-section[J]. Philos Mag Ser 6,1922,43:125-131. doi: 10.1080/14786442208633855
    [6] Teoh L S,Huang C C. The vibration of beams of fiber reinforced material[J].Journal of Sound and Vibration,1977,51(4):467-473. doi: 10.1016/S0022-460X(77)80044-8
    [7] Sankar B V. An elasticity solution for functionally graded beams[J]. Composite Science and Technology,2001,61(5):689-696. doi: 10.1016/S0266-3538(01)00007-0
    [8] Sankar B V,Tzeng J T. Thermal stresses in functionally graded beams[J].AIAA Journal,2002,40(6):1228-1232. doi: 10.2514/2.1775
    [9] Chakraborty A,Gopalakrishnan S,Reddy J N. A new beam finite element for the analysis of functionally graded materials[J].International Journal of Mechanical Sciences,2003,45(3):519-539. doi: 10.1016/S0020-7403(03)00058-4
    [10] Martin A F,Leissa A W. Application of the Ritz method to plane elasticity problems for composite sheets with variable fibre spacing[J].International Journal for Numerical Methods in Engineering,1989,28(8):1813-1825. doi: 10.1002/nme.1620280808
    [11] Leissa A W,Martin A F. Vibration and buckling of rectangular composite plates with variable fiber spacing[J].Composite Structures,1990,14(4):339-357. doi: 10.1016/0263-8223(90)90014-6
    [12] Meftah S A,Yeghnem R,Tounsi A,et al.Seismic behavior of RC coupled shear walls repaired with CFRP laminates having variable fibers spacing[J].Construction and Building Materials,2007,21(8):1661-1671. doi: 10.1016/j.conbuildmat.2006.05.011
    [13] Wetherhold R C,Seelman S,Wang J. The use of functionally graded materials to eliminate or control thermal deformation[J].Composite Science and Technology,1996,56(9):1099-1104. doi: 10.1016/0266-3538(96)00075-9
    [14] Benatta M A,Mechab I,Tounsi A,et al.Static analysis of functionally graded short beams including warping and shear deformation effects[J].Computational Materials Science,2008,44(2):465-773.
    [15] Whitney J M, Pagano N J.Shear deformation in heterogeneous anisotropic plates[J].J Appl Mech,1970,37(4):1031-1036. doi: 10.1115/1.3408654
    [16] Chandrashekhara K,Krishnamurthy K,Roy S. Free vibration of composite beams including rotary inertia and shear deformation[J].Composite Structures,1990,14(4):269-279. doi: 10.1016/0263-8223(90)90010-C
    [17] Daniel I M,Ishai O.Engineering Mechanics of Composite Materials[M].New York:Oxford University Press, 1994.
    [18] Huang T C.The effect of rotary inertia and of shear deformation on the frequency and normal mode equations of uniform beams with simple end condition[J].J Appl Mech,1961,28:579-584. doi: 10.1115/1.3641787
  • 加载中
计量
  • 文章访问数:  1563
  • HTML全文浏览量:  104
  • PDF下载量:  822
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-08-12
  • 修回日期:  2009-04-01
  • 刊出日期:  2009-06-15

目录

    /

    返回文章
    返回