## 留言板

 引用本文: 李灿华, 陈传淼. 平均间断有限元的强超收敛性及在Hamilton系统的应用[J]. 应用数学和力学, 2011, 32(7): 883-894.
LI Can-hua, CHEN Chuan-miao. Ultraconvergence for Averaging Discontinuous Finite Elements and Its Applications in Hamiltonian System[J]. Applied Mathematics and Mechanics, 2011, 32(7): 883-894. doi: 10.3879/j.issn.1000-0887.2011.07.011
 Citation: LI Can-hua, CHEN Chuan-miao. Ultraconvergence for Averaging Discontinuous Finite Elements and Its Applications in Hamiltonian System[J]. Applied Mathematics and Mechanics, 2011, 32(7): 883-894.

## 平均间断有限元的强超收敛性及在Hamilton系统的应用

##### doi: 10.3879/j.issn.1000-0887.2011.07.011

###### 作者简介:李灿华(1978- ),女,湖南南县人,博士生(联系人.Te:l+86-731-88872852;E-mai:lcan-huali827@hunnu.edu.cn).
• 中图分类号: O242.21

## Ultraconvergence for Averaging Discontinuous Finite Elements and Its Applications in Hamiltonian System

• 摘要: 讨论了常微分方程初值问题的k次平均间断有限元．当k为偶数时，证明了在节点上的平均通量（间断有限元在节点上的左右极限的平均值）有2k+2阶最佳强超收敛性．对具有动量守恒的非线性Hamilton系统(如Schrdinger方程和Kepler系统),发现此类间断有限元在节点上是动量守恒的．这些性质被数值试验所证实．
•  [1] Brenner S, Scott L. The Mathematical Theory of Finite Element Methods[M]. Berlin: Springer, 1994. [2] Thomee V. Galerkin Finite Element Methods for Parabolic Problems[M]. Berlin: Springer, 1997. [3] 王烈衡,许学军.有限元方法的数学基础[M].北京：科学出版社,2004.(WANG Lie-heng, XU Xue-jun. The Mathematical Foundation of Finite Element Methods[M]. Beijing: Science Press, 2004.(in Chinese)) [4] 余德浩,汤华中.微分方程数值解法[M].北京：科学出版社,2003.(YU De-hao, TANG Hua-zhong. Numerical Solution of Differential Equations[M]. Beijing: Science Press, 2003.(in Chinese)) [5] Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation[R]. Tech Report LA-UR-73-479. Los Alamos Scientific Laboratory, 1973. [6] Delfour M, Hager W, Trochu F. Discontinuous Galerkin methods for ordinary differential equations[J]. Math Comp, 1981, 36（154）: 455-473. [7] Aziz A K, Monk P. Continuous finite elements in space and time for the heat equation[J]. Math Comp, 1989, 52(186): 255-274. [8] Cockburn B, LIN S Y, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws 3: one-dimensional systems[J]. J Comput Phy, 1989, 84: 90-113. [9] Johnson C, Pitkaranta J. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation[J]. Math Comp, 1986, 46(173): 1-26. [10] 陈传淼. 有限元超收敛构造理论[M]. 长沙: 湖南科技出版社, 2001.(CHEN Chuan-miao. Structure Theory of Superconvergence for Finite Elements[M]. Changsha: Hunan Science and Techniques Press, 2001.(in Chinese)) [11] 陈传淼. 科学计算概论[M]. 北京: 科学出版社, 2007.(CHEN Chuan-miao. Introduction to Science Computations[M]. Beijing: Science Press, 2007. (in Chinese)) [12] 冯康.冯康全集[M]. 第二卷. 北京: 国防工业出版社, 1995.(FENG Kang. Collection Works of Feng Kang[M]. Vol 2. Beijing: National Defence Industry Press, 1995.(in Chinese)) [13] 冯康, 秦孟兆. 哈密尔顿的辛几何算法[M]. 杭州:浙江科学技术出版社. 2003.(FENG Kang, QING Meng-zhao. Sympletic Geometric Algorithms for Hamilton System[M]. Hangzhou: Zhejiang Science and Techniques Press, 2003.(in Chinese)) [14] Hairer E, Lubich C, Wanner G. Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations[M]. Berlin: Springer, 2003. [15] TANG Qiong, CHEN Chuan-miao. Energy conservation and symplectic properties of continuous finite element methods for Hamiltonian systems[J]. Appl Math Comput, 2006, 181(2): 1357-1368. [16] CHEN Chuan-miao, TANG Qiong, HU Shu-fang. Finite element method with superconvergence for nonlinear Hamilton system[J]. J Comp Math, 2011, 29(2):167-184.

##### 计量
• 文章访问数:  1116
• HTML全文浏览量:  18
• PDF下载量:  787
• 被引次数: 0
##### 出版历程
• 收稿日期:  2010-10-18
• 修回日期:  2011-03-25
• 刊出日期:  2011-07-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈