留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异常情况时的Liapunov-Kozlov法

V·乔维奇 D·久里奇 M·韦仕科尉克 A·奥布拉德维克

V·乔维奇, D·久里奇, M·韦仕科尉克, A·奥布拉德维克. 异常情况时的Liapunov-Kozlov法[J]. 应用数学和力学, 2011, 32(9): 1127-1138. doi: 10.3879/j.issn.1000-0887.2011.09.012
引用本文: V·乔维奇, D·久里奇, M·韦仕科尉克, A·奥布拉德维克. 异常情况时的Liapunov-Kozlov法[J]. 应用数学和力学, 2011, 32(9): 1127-1138. doi: 10.3879/j.issn.1000-0887.2011.09.012
V. Čović, D. Djurić, M. Vesković, A. Obradović. Liapunov-Kozlov Method for Singular Cases[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1127-1138. doi: 10.3879/j.issn.1000-0887.2011.09.012
Citation: V. Čović, D. Djurić, M. Vesković, A. Obradović. Liapunov-Kozlov Method for Singular Cases[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1127-1138. doi: 10.3879/j.issn.1000-0887.2011.09.012

异常情况时的Liapunov-Kozlov法

doi: 10.3879/j.issn.1000-0887.2011.09.012
基金项目: 塞尔维亚共和国科学和技术发展部基金资助项目(ON174004;ON174016;TR335006)
详细信息
  • 中图分类号: O317

Liapunov-Kozlov Method for Singular Cases

  • 摘要: Kozlov 将Liapunov第一方法推广到非线性力学系统,用来研究保守力和耗散力场中,运动力学系统平衡位置的不稳定性.在平衡位置分析惯性张量的异常,或者Rayleigh耗散函数系数矩阵的异常.在稳定性分析中,实际上不可能应用Liapunov逼近法,因为平衡位置的存在条件,和运动微分方程解的唯一性条件,均无法得到满足.Kozlov的广义Liapunov第一方法,不仅适用上面提及的条件,此外,还知道同样的代数表达式得到满足.给出了3个关于平衡位置的不稳定性定理.用一个例子,举例说明了得到的结果.
  • [1] Karapetyan A V, Rumyantsev V V. Stability of conservative and dissipative systems[J]. Itogi Nauki i Tekhniki, Obshchaya Mekh, 1983, 6: 128. (in Russian)
    [2] Karapetyan A V. Stability of Steady Motions[M]. Moscow: Editorial URSS, 1998, 165 . (in Russian)
    [3] 梅凤翔,史荣昌,张永发,朱海平. 约束力学系统的运动稳定性[M]. 北京: 北京理工大学出版社, 1997.(MEI Feng-xiang, SHI Rong-chang, ZHANG Yong-fa, ZHU Hai-ping. Stability of Motion of Constrained Mechanical Systems[M]. Beijing: Beijing Institute of Technology Press, 1997. (in Chinese))
    [4] 梅凤翔. 关于非线性非完整系统平衡状态的稳定性[J]. 科学通报, 1992, 37(1):82-85.(MEI Feng-xiang. On stability of equilibrium states of nonlinear nonholonomic systems[J]. Chinese Science Bulletin, 1992, 37(1): 82-85.(in Chinese))
    [5] MEI Feng-xiang. On the stability of equilibria of nonlinear nonholonomic systems[J]. Chinese Science Bulletin, 1992, 37(16): 1397-1401.
    [6] 朱海平, 梅凤翔. 关于非完整力学系统系统相对部分变量的稳定性[J]. 应用数学和力学,1995,16(3):225-234.(ZHU Hai-ping,MEI Feng-xiang. On the stability of nonholonomic mechanical systems with respect to partial variables[J]. Applied Mathematics and Mechanics(English Edition), 1995, 16(3): 237-245.)
    [7] Shi R C, Mei F X, Zhu H P. On the stability of the motion of a Birkhoff system[J]. Mechanics Research Communications, 1994, 21(3): 269-272. doi: 10.1016/0093-6413(94)90077-9
    [8] Fu J L, Chen L Q, Luo Y, Luo S K. Stability for the equilibrium state manifold of relativistic Birkhoffian systems[J]. Chinese Physics, 2003, 12(4): 351-356. doi: 10.1088/1009-1963/12/4/301
    [9] Fu J L, Chen L Q, Xue Y, Luo S K. Stability of the equilibrium state in relativistic Birkhoff systems[J]. Wuli Xuebao/Acta Physica Sinica, 2002, 51(12): 2683-2689.
    [10] Fu J L, Chen L Q, Xue Y. Stability for the equilibrium state of rotational relativistic Birkhoffian systems[J]. Wuli Xuebao/Acta Physica Sinica, 2003, 52 (2): 256-261.
    [11] Luo S K, Chen X W, Fu J L. Stability theorems for the equilibrium state manifold of non-holonomic systems in a noninertial reference frame[J]. Mechanics Research Communication, 2001, 28(4): 463-469. doi: 10.1016/S0093-6413(01)00196-3
    [12] Lyapunov A M. The General Problem of the Stability of Motion[M]. Khar’kov: Mat Obshch, 1892: 450. (in Russian)
    [13] Furta S D. On the instability of equilibrium position of constrained mechanical systems[J]. Prikladnaya Mekhanika, 1991, 27(2): 102-106. (in Russian)
    [14] Kozlov V V. On the asymptotic motions of systems with dissipation[J]. Journal of Applied Mathematics and Mechanics, 1994, 58(5): 787-792. doi: 10.1016/0021-8928(94)90003-5
    [15] Kozlov V V, Furta S D. Asymptotics of Solutions for Strongly Nonlinear Systems of Differential Equations[M]. Institute of Computer Science, Regular and Chaotic Dynamics. Moscow: Izhevsk, 2009: 312. (in Russian)
    [16] Kozlov V V, Furta S D. Lyapunov’s first method for strongly non-linear systems[J]. Journal of Applied Mathematics and Mechanics, 1996, 60(1): 7-18. doi: 10.1016/0021-8928(96)00003-2
    [17] Kozlov V V. On the stability of equilibria of non-Holonomic systems[J]. Soviet Mathematics - Doklady, 1986, 33(3): 654-656. (in Russian)
    [18] Kuznetsov A N. The existence of solutions of an autonomous system, recurring at a singular point, having a formal solution[J]. Funktsional'nyi Analiz i yego Prilozheniya, 1989, 23(4): 63-74. (in Russian)
    [19] Cˇovic' V, Veskovic' M, Obradovic' A. On the stability of steady motion[J]. Meccanica. doi: 10.1007/s11012-010-9348-2.
    [20] Veskovic' M. On the equilibrium stability of mechanical systems with dissipation[J]. Theoretical and Applied Mechanics, 1998, 24: 139-154.
    [21] Cˇovic' V, Veskovic' M, Obradovic' A. On the instability of equilibrium of nonholonomic systems with nonhomogeneous constraints[J]. Mathematical and Computer Modeling, 2010, 51(9/10): 1097-1106. doi: 10.1016/j.mcm.2009.12.017
    [22] V·科维克, M·维什科维克, D·狄加瑞克, A·阿伯拉达维克. 非线性约束下非完整系统的平衡稳定性[J]. 应用数学和力学, 2010, 31(6):722-730. (Cˇovic' V, Veskovic' M, DJuric' D. Obradovic' A. On the stability of equilibria of nonholonomic systems with nonlinear constraints[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(6): 751-760.)
    [23] M·韦仕科尉克, V·科尉克, A·奥布拉德尉克. 非完整系统有耗散和循环力时的平衡不稳定性[J]. 应用数学和力学, 2011, 32(2): 202-212.(Veskovic' M, Cˇovic' V, Obradovic' A. Instability of equilibrium of nonholonomic systems with dissipation and circulatory forces[J]. Applied Mathematics and Mechanics(English Edition), 2011, 32(2): 212-222.)
    [24] Veskovic' M, Cˇovic' V. Lyapunov first method for nonholonomic systems with circulatory forces[J]. Mathematical and Computer Modeling, 2007, 45(9/10): 1145-1156. doi: 10.1016/j.mcm.2006.09.015
  • 加载中
计量
  • 文章访问数:  1044
  • HTML全文浏览量:  9
  • PDF下载量:  672
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-25
  • 修回日期:  2011-06-15
  • 刊出日期:  2011-09-15

目录

    /

    返回文章
    返回