留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

朝向产热或吸热伸展平面的MHD驻点流动

H·哈亚特 M·侯赛因 A·A·亨迪 S·纳迪姆

H·哈亚特, M·侯赛因, A·A·亨迪, S·纳迪姆. 朝向产热或吸热伸展平面的MHD驻点流动[J]. 应用数学和力学, 2012, 33(5): 598-613. doi: 10.3879/j.issn.1000-0887.2012.05.008
引用本文: H·哈亚特, M·侯赛因, A·A·亨迪, S·纳迪姆. 朝向产热或吸热伸展平面的MHD驻点流动[J]. 应用数学和力学, 2012, 33(5): 598-613. doi: 10.3879/j.issn.1000-0887.2012.05.008
MHD Stagnation Point Flow Towards a Heated Shrinking Surface Subject to Heat Generation/Absorption[J]. Applied Mathematics and Mechanics, 2012, 33(5): 598-613. doi: 10.3879/j.issn.1000-0887.2012.05.008
Citation: MHD Stagnation Point Flow Towards a Heated Shrinking Surface Subject to Heat Generation/Absorption[J]. Applied Mathematics and Mechanics, 2012, 33(5): 598-613. doi: 10.3879/j.issn.1000-0887.2012.05.008

朝向产热或吸热伸展平面的MHD驻点流动

doi: 10.3879/j.issn.1000-0887.2012.05.008
基金项目: 巴基斯坦高等教育委员会(HEC)资助课题(106-1396-P56-004)
详细信息
  • 中图分类号: O361.3

MHD Stagnation Point Flow Towards a Heated Shrinking Surface Subject to Heat Generation/Absorption

  • 摘要: 分析了微极流体朝向加热伸展平面的磁流体动力学(MHD)驻点流动,考虑了粘性耗散和内部产热/吸热对流动的影响.讨论了指定表面温度(PST)和指定热通量(PHF)两种情况,采用同伦分析方法(HAM)求解边界层流动和能量方程.通过图表的显示,研究了感兴趣物理量的变化.注意到高伸展参数时解的存在与外加应用磁场密切相关.
  • [1] Mahapatra T R, Gupta A S. Magnetohydrodynamics stagnation point flow towards a stretching sheet[J]. Acta Mechanica, 2001, 152(1/4): 191-196.
    [2] Nazar R, Amin N, Filip D, Pop I. Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet[J]. International Journal of Engineering Science, 2004, 42(11/12): 1241-1253.
    [3] Lok Y Y, Amin N, Pop I. Unsteady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface[J]. International Journal of Thermal Sciences, 2006, 45(12): 1149-1157.
    [4] Yian L Y, Amin N, Pop I. Mixed convection flow near a non-orthogonal stagnation point towards a stretching vertical plate[J]. International Journal of Heat and Mass Transfer, 2007, 50(23/24): 4855-4863.
    [5] Wang C Y. Off-centered stagnation flow towards a rotating disc[J]. International Journal of Engineering Science, 2008, 46(4): 391-396.
    [6] Xu H, Liao S J, Pop I. Series solution of unsteady boundary layer flow of a micropolar fluid near the forward stagnation point of a plane surface[J]. Acta Mechanica, 2006, 184(14): 87-101.
    [7] Nadeem S, Hussain M, Naz M. MHD stagnation flow of a micropolar fluid through a porous medium[J]. Meccanica, 2010, 45(6) :869-880.
    [8] Kumari M, Nath G. Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field[J]. International Journal of Non-Linear Mechanics, 2009, 44(10): 1048-1055.
    [9] Hayat T,Abbas Z,Sajid M. MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface[J]. Chaos, Solitons & Fractals, 2009, 39(2): 840-848.
    [10] Labropulu F, Li D, Pop I. Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer[J]. International Journal of Thermal Sciences, 2010, 49(6) :1042-1050.
    [11] Miklavic M, Wang C Y. Viscous flow due to a shrinking sheet[J]. Quarterly Applied Mathematics, 2006, 64(2): 283-290.
    [12] Fang T. Zhong Y. Viscous flow over a shrinking sheet with an arbitrary surface velocity[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(12): 3768-3776.
    [13] Cortell R. On a certain boundary value problem arising in shrinking sheet flows[J]. Applied Mathematics and Computation, 2010, 217(8): 4086-4093.
    [14] Nadeem S, Awais M. Thin film flow of an unsteady shrinking sheet through porous medium with variable viscosity[J]. Physics Letters A, 2008, 372(30): 4965-4972.
    [15] Hayat T, Iram S, Javed T, Asghar S. Shrinking flow of second grade fluid in a rotating frame: an analytic solution[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(10): 2932-2941.
    [16] Eringen A C. Theory of micropolar fluids[J]. J Math Mech, 1966, 16(1): 1-18.
    [17] Eringen A C. Microcontinuum Field Theories―Ⅱ: Fluent Media[M]. New York: Springer, 2001.
    [18] Devakar M, Iyengar T K V. Stokes’ first problem for a micropolar fluid through state-space approach[J]. Applied Mathematical Modelling, 2009, 33(2): 924-936.
    [19] Ali N, Hayat T. Peristaltic flow of a micropolar fluid in an asymmetric channel[J]. Computers & Mathematics With Applications, 2008, 55(4): 589-608.
    [20] Magyari E, Kumaran V. Generalized Crane flows of micropolar fluids[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(11): 3237-3240.
    [21] Ariman T, Turk M A, Sylvester N D. Microcontinuum fluid mechanics―a review[J]. International Journal of Engineering Science, 2010, 11(8): 905-930.
    [22] Hoyt J W, Fabula A F. The effect of additives on fluid friction
    [23] [R]. US Naval Ordinance Test station Report, 1964.
    [24] Power H. Micropolar fluid model for the brain fluid dynamics[C]Int Confer Bio-Fluid Mech, UK, 1998.
    [25] Abbasbandy S. Homotopy analysis method for the Kawahara equation[J]. Nonlinear Analysis: Real World Applications, 2010, 11(1): 307-312.
    [26] LIU Cheng-shi. The essence of the homotopy analysis method[J]. Applied Mathematics and Computation, 2010, 216(4): 1299-1303.
    [27] Liao S J. Beyond Perturbation: Introductin to Homotopy Analysis Method[M]. Boca Raton: Chapman & Hall/CRC Press, 2003.
    [28] LIAO Shi-jun. A short review on the homotopy analysis method in fluid mechanics[J]. Journal of Hydrodynamics, Ser B, 2010, 22(5): 882-884.
    [29] Hayat T, Naz R, Sajid M. On the homotopy solution for Poiseuille flow of a fourth grade fluid[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(3): 581-589.
    [30] Hayat T, Qasim M, Abbas Z. Homotopy solution for the unsteady three-dimensional MHD flow and mass transfer in a porous space[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(9): 2375-2387.
    [31] Dinarvand S, Doosthoseini A, Doosthoseini E, Rashidi M M. Series solutions for unsteady laminar MHD flow near forward stagnation point of an impulsively rotating and translating sphere in presence of buoyancy forces[J]. Nonlinear Analysis: Real World Applications, 2010, 11(2): 1159-1169.
    [32] Hayat T, Javed T. On analytic solution for generalized three-dimensional MHD flow over a porous stretching sheet[J]. Physics Letters A, 2007, 370(3/4): 243-250.
    [33] Abbasbandy S, Yurusoy M, Pakdemirli M. The analysis approach of boundary layer equations of power-law fluids of second grade[J]. Z Naturforsch A, 2008, 63: 564-570.
    [34] Tan Y, Abbasbandy S. Homotopy analysis method for quadratic Riccati differential equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(3): 539-546.
    [35] Hayat T, Iqbal Z, Sajid M, Vajravelu K. Heat transfer in pipe flow of a Johnson-Segalman fluid[J]. International Communications in Heat and Mass Transfer, 2008, 35(10): 1297-1301.
    [36] Rees D A S, Pop I. Free convection boundary layer flow of a micropolar fluid from a vertical flat plate[J]. IMA Journal of Applied Mathematics, 1998, 61(2): 179-197.
  • 加载中
计量
  • 文章访问数:  1350
  • HTML全文浏览量:  93
  • PDF下载量:  622
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-03
  • 修回日期:  2011-12-29
  • 刊出日期:  2012-05-15

目录

    /

    返回文章
    返回