[1] |
Mahapatra T R, Gupta A S. Magnetohydrodynamics stagnation point flow towards a stretching sheet[J]. Acta Mechanica, 2001, 152(1/4): 191-196.
|
[2] |
Nazar R, Amin N, Filip D, Pop I. Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet[J]. International Journal of Engineering Science, 2004, 42(11/12): 1241-1253.
|
[3] |
Lok Y Y, Amin N, Pop I. Unsteady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface[J]. International Journal of Thermal Sciences, 2006, 45(12): 1149-1157.
|
[4] |
Yian L Y, Amin N, Pop I. Mixed convection flow near a non-orthogonal stagnation point towards a stretching vertical plate[J]. International Journal of Heat and Mass Transfer, 2007, 50(23/24): 4855-4863.
|
[5] |
Wang C Y. Off-centered stagnation flow towards a rotating disc[J]. International Journal of Engineering Science, 2008, 46(4): 391-396.
|
[6] |
Xu H, Liao S J, Pop I. Series solution of unsteady boundary layer flow of a micropolar fluid near the forward stagnation point of a plane surface[J]. Acta Mechanica, 2006, 184(14): 87-101.
|
[7] |
Nadeem S, Hussain M, Naz M. MHD stagnation flow of a micropolar fluid through a porous medium[J]. Meccanica, 2010, 45(6) :869-880.
|
[8] |
Kumari M, Nath G. Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field[J]. International Journal of Non-Linear Mechanics, 2009, 44(10): 1048-1055.
|
[9] |
Hayat T,Abbas Z,Sajid M. MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface[J]. Chaos, Solitons & Fractals, 2009, 39(2): 840-848.
|
[10] |
Labropulu F, Li D, Pop I. Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer[J]. International Journal of Thermal Sciences, 2010, 49(6) :1042-1050.
|
[11] |
Miklavic M, Wang C Y. Viscous flow due to a shrinking sheet[J]. Quarterly Applied Mathematics, 2006, 64(2): 283-290.
|
[12] |
Fang T. Zhong Y. Viscous flow over a shrinking sheet with an arbitrary surface velocity[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(12): 3768-3776.
|
[13] |
Cortell R. On a certain boundary value problem arising in shrinking sheet flows[J]. Applied Mathematics and Computation, 2010, 217(8): 4086-4093.
|
[14] |
Nadeem S, Awais M. Thin film flow of an unsteady shrinking sheet through porous medium with variable viscosity[J]. Physics Letters A, 2008, 372(30): 4965-4972.
|
[15] |
Hayat T, Iram S, Javed T, Asghar S. Shrinking flow of second grade fluid in a rotating frame: an analytic solution[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(10): 2932-2941.
|
[16] |
Eringen A C. Theory of micropolar fluids[J]. J Math Mech, 1966, 16(1): 1-18.
|
[17] |
Eringen A C. Microcontinuum Field Theories―Ⅱ: Fluent Media[M]. New York: Springer, 2001.
|
[18] |
Devakar M, Iyengar T K V. Stokes’ first problem for a micropolar fluid through state-space approach[J]. Applied Mathematical Modelling, 2009, 33(2): 924-936.
|
[19] |
Ali N, Hayat T. Peristaltic flow of a micropolar fluid in an asymmetric channel[J]. Computers & Mathematics With Applications, 2008, 55(4): 589-608.
|
[20] |
Magyari E, Kumaran V. Generalized Crane flows of micropolar fluids[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(11): 3237-3240.
|
[21] |
Ariman T, Turk M A, Sylvester N D. Microcontinuum fluid mechanics―a review[J]. International Journal of Engineering Science, 2010, 11(8): 905-930.
|
[22] |
Hoyt J W, Fabula A F. The effect of additives on fluid friction
|
[23] |
[R]. US Naval Ordinance Test station Report, 1964.
|
[24] |
Power H. Micropolar fluid model for the brain fluid dynamics[C]Int Confer Bio-Fluid Mech, UK, 1998.
|
[25] |
Abbasbandy S. Homotopy analysis method for the Kawahara equation[J]. Nonlinear Analysis: Real World Applications, 2010, 11(1): 307-312.
|
[26] |
LIU Cheng-shi. The essence of the homotopy analysis method[J]. Applied Mathematics and Computation, 2010, 216(4): 1299-1303.
|
[27] |
Liao S J. Beyond Perturbation: Introductin to Homotopy Analysis Method[M]. Boca Raton: Chapman & Hall/CRC Press, 2003.
|
[28] |
LIAO Shi-jun. A short review on the homotopy analysis method in fluid mechanics[J]. Journal of Hydrodynamics, Ser B, 2010, 22(5): 882-884.
|
[29] |
Hayat T, Naz R, Sajid M. On the homotopy solution for Poiseuille flow of a fourth grade fluid[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(3): 581-589.
|
[30] |
Hayat T, Qasim M, Abbas Z. Homotopy solution for the unsteady three-dimensional MHD flow and mass transfer in a porous space[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(9): 2375-2387.
|
[31] |
Dinarvand S, Doosthoseini A, Doosthoseini E, Rashidi M M. Series solutions for unsteady laminar MHD flow near forward stagnation point of an impulsively rotating and translating sphere in presence of buoyancy forces[J]. Nonlinear Analysis: Real World Applications, 2010, 11(2): 1159-1169.
|
[32] |
Hayat T, Javed T. On analytic solution for generalized three-dimensional MHD flow over a porous stretching sheet[J]. Physics Letters A, 2007, 370(3/4): 243-250.
|
[33] |
Abbasbandy S, Yurusoy M, Pakdemirli M. The analysis approach of boundary layer equations of power-law fluids of second grade[J]. Z Naturforsch A, 2008, 63: 564-570.
|
[34] |
Tan Y, Abbasbandy S. Homotopy analysis method for quadratic Riccati differential equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(3): 539-546.
|
[35] |
Hayat T, Iqbal Z, Sajid M, Vajravelu K. Heat transfer in pipe flow of a Johnson-Segalman fluid[J]. International Communications in Heat and Mass Transfer, 2008, 35(10): 1297-1301.
|
[36] |
Rees D A S, Pop I. Free convection boundary layer flow of a micropolar fluid from a vertical flat plate[J]. IMA Journal of Applied Mathematics, 1998, 61(2): 179-197.
|