留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热交换多孔圆盘间三阶流体的MHD轴对称流动

T·哈亚特 A·沙菲克 M·纳瓦兹 A·艾沙伊迪

T·哈亚特, A·沙菲克, M·纳瓦兹, A·艾沙伊迪. 热交换多孔圆盘间三阶流体的MHD轴对称流动[J]. 应用数学和力学, 2012, 33(6): 710-725. doi: 10.3879/j.issn.1000-0887.2012.06.006
引用本文: T·哈亚特, A·沙菲克, M·纳瓦兹, A·艾沙伊迪. 热交换多孔圆盘间三阶流体的MHD轴对称流动[J]. 应用数学和力学, 2012, 33(6): 710-725. doi: 10.3879/j.issn.1000-0887.2012.06.006
T.Hayata, Anum Shafiq, M.Nawaz, A.Alsaedi. MHD Axisymmetric Flow of a Third-Grade Fluid Between Porous Disks With Heat Transfer[J]. Applied Mathematics and Mechanics, 2012, 33(6): 710-725. doi: 10.3879/j.issn.1000-0887.2012.06.006
Citation: T.Hayata, Anum Shafiq, M.Nawaz, A.Alsaedi. MHD Axisymmetric Flow of a Third-Grade Fluid Between Porous Disks With Heat Transfer[J]. Applied Mathematics and Mechanics, 2012, 33(6): 710-725. doi: 10.3879/j.issn.1000-0887.2012.06.006

热交换多孔圆盘间三阶流体的MHD轴对称流动

doi: 10.3879/j.issn.1000-0887.2012.06.006
详细信息
  • 中图分类号: O357.1; O361.3

MHD Axisymmetric Flow of a Third-Grade Fluid Between Porous Disks With Heat Transfer

  • 摘要: 在两个具有热交换可渗透的多孔圆盘之间,研究三阶流体的磁流体动力学(MHD)流动.通过适当变换,将偏微分的控制方程转换为常微分方程.采用同伦分析法(HAM)求解转换后的方程.定义了均方残余误差的表达式,并选择了最佳的、收敛的控制参数值.检测了无量纲参数变化时的无量纲速度和温度场.列表显示表面摩擦因数和Nusselt数,并分析了无量纲参数的影响.
  • [1] Fetecau C, Mahmood A, Jamil M. Exact solutions for the flow of a viscoelastic fluid induced by a circular cylinder subject to a time dependent shear stress[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(12): 3931-3938.
    [2] Jamil M, Fetecau C, Imran M. Unsteady helical flows of Oldroyd-B fluids[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3): 1378-1386.
    [3] Jamil M, Rauf A, Fetecau C, Khan N A. Helical flows of second grade fluid to constantly accelerated shear stresses[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(4): 1959 -1969.
    [4] Tan W C, Masuoka T. Stability analysis of a Maxwell fluid in a porous medium heated from below[J]. Physics Letters A, 2007, 360(3): 454-460.
    [5] Tan W C, Masuoka T. Stokes’ first problem for an Oldroyd-B fluid in a porous half space[J]. Physics of Fluids, 2005, 17(2): 023101-7.
    [6] Sajid M, Hayat T. Non-similar series solution for boundary layer flow of a third-order fluid over a stretching sheet[J]. Applied Mathematics and Computation, 2007, 189(2): 1576-1585.
    [7] Sajid M, Hayat T, Asghar S. Non-similar analytic solution for MHD flow and heat transfer in a third order fluid over a stretching sheet[J]. International Journal of Heat and Mass Transfer, 2007, 50(9/10): 1723-1736.
    [8] Hayat T, Mustafa M, Asghar S. Unsteady flow with heat and mass transfer of a third grade fluid over a stretching surface in the presence of chemical reaction[J]. Nonlinear Analysis: Real World Applications, 2010, 11(4): 3186-3197.
    [9] Abbasbandy S, Hayat T. On series solution for unsteady boundary layer equations in a special third grade fluid[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8): 3140-3146.
    [10] Sahoo B. Hiemenz flow and heat transfer of a third grade fluid[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(3): 811-826.
    [11] Sahoo B, Do Y. Effects of slip on sheet driven flow and heat transfer of a third-grade fluid past a stretching sheet[J]. International Communication in Heat and Mass Transfer, 2010, 37(8): 1064-1071.
    [12] von Krmn T. ber laminare and turbulente reibung[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1921, 1(4): 233-255.
    [13] Cochran W G. The flow due to a rotating disk[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1934, 30(3): 365-375.
    [14] Benton E R. On the flow due to a rotating disk[J]. Journal of Fluid Mechanics, 1966, 24(781/800): 133-137.
    [15] Takhar H S, Chamkha A J, Nath G. Unsteady mixed convection flow from a rotating verticle cone with a magnetic field[J]. Heat and Mass Transfer, 2003, 39(4): 297-304.
    [16] Maleque K A, Sattar M A. The effects of variable properties and Hall current on steady MHD laminar convective fluid flow due to a porous rotating disk[J]. International Journal of Heat and Mass Transfer, 2005, 48(23/24): 4963-4972.
    [17] Stuart J T. On the effect of uniform suction on the steady flow due to a rotating disk[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1954, 7(4): 446-457.
    [18] Sparrow E M, Beavers G S, Hung L Y. Flow about a porous-surface rotating disk[J]. International Journal of Heat and Mass Transfer, 1971, 14: 993-996.
    [19] Miklavcic M, Wang C Y. The flow due to a rough rotating disk[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 2004, 55(2): 235-246.
    [20] Hayat T, Nawaz M. Unsteady stagnation point flow of viscous fluid caused by an impulsively rotating disk[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(1): 41-49.
    [21] Liao S J. Beyond Perturbation: Introduction to Homotopy Analysis Method[M]. Boca Raton: Chapman and Hall, CRC Press, 2003.
    [22] Liao S J. On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet[J]. Journal of Fluid Mechanics, 2003, 488: 189-212.
    [23] Liao S J. On the homotopy analysis method for nonlinear problems[J]. Applied Mathematics and Computation, 2004, 147(12): 499-513.
    [24] Liao S J. Notes on the homotopy analysis method: some definitions and theorems[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4): 983-997.
    [25] Liao S J. An optimal homotopy analysis approach for strongly nonlinear differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(8): 2003-2016.
    [26] Rashidi M M, Domairry G, Dinarvand S. Approximate solutions for the Burger and regularized long wave equations by means of the homotopy analysis method[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(3): 708-717.
    [27] Abbasbandy S, Shirzadi A. A new application of the homotopy analysis method: solving the Sturm-Liouville problems[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(1): 112-126.
    [28] Bataineh A S, Noorani M S M, Hashim I. Approximate analytical solutions of systems of PDEs by homotopy analysis method[J]. Computer and Mathematics With Applications, 2008, 55(12): 2913-2923.
    [29] Hashim I, Abdulaziz O, Momani S. Homotopy analysis method for fractional IVPs[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(3): 674-684.
    [30] 哈亚特 T, 纳瓦兹 M, 奥拜达特 S. 微极流体在两个伸展平面之间的不稳定轴对称MHD流动[J]. 应用数学和力学, 2011, 32(3): 344-356 (Hayat T, Nawaz M, Obaidat S. Axisymmetric magnetohydrodynamic flow of a micropolar fluid between unsteady stretching surfaces[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(3): 361-374).
    [31] Fosdick R L, Rajagopal K R. Thermodynamics and stability of fluids of third grade[J]. Proc Roy Soc London, 1980, 369(1738): 351-377.
  • 加载中
计量
  • 文章访问数:  1645
  • HTML全文浏览量:  172
  • PDF下载量:  717
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-02
  • 修回日期:  2012-02-08
  • 刊出日期:  2012-06-15

目录

    /

    返回文章
    返回