## 留言板

Rosseland方程及其均匀化方程的存在性理论

 引用本文: 张乔夫, 崔俊芝. Rosseland方程及其均匀化方程的存在性理论[J]. 应用数学和力学, 2012, 33(12): 1487-1502.
ZHANG Qiao-fu, CUI Jun-zhi. Existence Theory  for Rosseland Equation and Its Homogenized Equation[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1487-1502. doi: 10.3879/j.issn.1000-0887.2012.12.010
 Citation: ZHANG Qiao-fu, CUI Jun-zhi. Existence Theory  for Rosseland Equation and Its Homogenized Equation[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1487-1502.

## Rosseland方程及其均匀化方程的存在性理论

##### doi: 10.3879/j.issn.1000-0887.2012.12.010

###### 作者简介:张乔夫(1985—), 男, 河南洛阳人, 博士(联系人. Tel: +86-10-62568715;E-mail: zhangqf@lsec.cc.ac.cn).
• 中图分类号: O175.29

## Existence Theory  for Rosseland Equation and Its Homogenized Equation

• 摘要: 给出了带一般增长条件的Rosseland型方程解的整体有界性和存在性．在一个闭凸集中定义一个线性化映射．像集是预紧的且这个映射是连续的,因此存在一个不动点．利用多尺度展开方法可得均匀化方程．这个方程满足类似的增长条件．
•  [1] ZHANG Qiao-fu, CUI Jun-zhi.Multi-scale analysis method for combined conductionradiation heat transfer of periodic composites[C]//Advances in Heterogeneous Material Mechanics. Lancaster: DEStech Publications, 2011: 461-464. [2] Modest M F. Radiative Heat Transfer[M]. 2nd. San Diego: McGrawHill, 2003: 450-453. [3] Laitinen M T. Asymptotic analysis of conductiveradiative heat transfer[J]. Asymptotic Analysis, 2002, 29(3): 323-342. [4] Griepentrog J A, Recke L. Linear elliptic boundary value problems with non-smooth data: normal solvability on SobolevCampanato spaces[J]. Math Nachr, 2001, 225(1): 39-74. [5] ZHANG Qiao-fu. Divergence form nonlinear nonsmooth parabolic equations with locally arbitrary growth conditions and nonlinear maximal regularity. arXivPreprint[math.AP], 2012, arXiv:1205.3237v1. [6] Gröger K. A W1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations[J].Math Ann, 1989, 283(4): 679-687. [7] WU Zhuo-qun, YIN Jing-xue, WANG Chun-peng. Elliptic and Parabolic Equations[M].Singapore: World Scientific, 2006: 105-111. [8] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order[M].Berlin: Springer, 2001: 171-280. [9] ZHANG Qiao-fu. Divergence form nonlinear nonsmooth elliptic equations with locally arbitrary growth conditions and nonlinear maximal regularity. arXivPreprint[math.AP], 2012, arXiv:1205.2412v1. [10] ZHANG Qiao-fu, CUI Jun-zhi. Regularity of the correctors and local gradient estimate of the homogenization for the elliptic equation: linear periodic case. arXivPreprint[math.AP], 2011, arXiv: 1109.1107v1. [11] Cioranescu D, Donato P. An Introduction to Homogenization[M].Oxford: Oxford University Press, 1999: 33-140. [12] Fusco N, Moscariello G. On the homogenization of quasilinear divergence structure operators[J].Annali di Matematica Pura ed Applicata, 1986, 146(1): 1-13. [13] Avellaneda M, Lin F H. Compactness method in the theory of homogenization[J].Comm Pure Appl Math, 1987, 40(6): 803-847. [14] Kenig C E, Lin F H, Shen Z W. Homogenization of elliptic systems with Neumann boundary conditions. arXivPreprint[math.AP], 2010, arXiv: 1010.6114v1. [15] HE Wen-ming, CUI Jun-zhi.Error estimate of the homogenization solution for elliptic problems with small periodic coefficients on L∞(Ω)[J]. Science China Mathematics, 2010, 53(5): 1231-1252. [16] HE Wen-ming, CUI Jun-zhi. A finite element method for elliptic problems with rapidly oscillating coefficients[J].BIT Numerical Mathematics, 2007, 47: 77-102.

##### 计量
• 文章访问数:  1691
• HTML全文浏览量:  26
• PDF下载量:  1129
• 被引次数: 0
##### 出版历程
• 收稿日期:  2011-12-01
• 修回日期:  2012-06-15
• 刊出日期:  2012-12-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈