留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电螺型位错与含非理想界面层圆形夹杂的干涉效应

方棋洪 冯慧 刘又文

方棋洪, 冯慧, 刘又文. 压电螺型位错与含非理想界面层圆形夹杂的干涉效应[J]. 应用数学和力学, 2013, 34(1): 49-62. doi: 10.3879/j.issn.1000-0887.2013.01.006
引用本文: 方棋洪, 冯慧, 刘又文. 压电螺型位错与含非理想界面层圆形夹杂的干涉效应[J]. 应用数学和力学, 2013, 34(1): 49-62. doi: 10.3879/j.issn.1000-0887.2013.01.006
FANG Qi-hong, FENG Hui, LIU You-wen. Electroelastic Interaction Between a Piezoelectric Screw Dislocation and a Circularly Layered Inclusion With Imperfect Interfaces[J]. Applied Mathematics and Mechanics, 2013, 34(1): 49-62. doi: 10.3879/j.issn.1000-0887.2013.01.006
Citation: FANG Qi-hong, FENG Hui, LIU You-wen. Electroelastic Interaction Between a Piezoelectric Screw Dislocation and a Circularly Layered Inclusion With Imperfect Interfaces[J]. Applied Mathematics and Mechanics, 2013, 34(1): 49-62. doi: 10.3879/j.issn.1000-0887.2013.01.006

压电螺型位错与含非理想界面层圆形夹杂的干涉效应

doi: 10.3879/j.issn.1000-0887.2013.01.006
基金项目: 国家自然科学基金资助项目(11172094; 11172095);教育部新世纪人才基金资助项目(NCET-11-0122);湖南大学汽车车身先进设计制造国家重点实验室自主课题基金资助项目(61075005;51075001);中央高校基础研究基金资助项目(湖南大学)
详细信息
    作者简介:

    方棋洪(1977—),男,浙江淳安人,副教授,博士(通讯作者.Fax: +86 0731 88822330; E-mail: fangqh1327@tom.com).

  • 中图分类号: O343.7

Electroelastic Interaction Between a Piezoelectric Screw Dislocation and a Circularly Layered Inclusion With Imperfect Interfaces

  • 摘要: 研究了位于压电材料基体或夹杂中任意点的压电螺型位错与含非理想界面层圆形夹杂的电弹性干涉问题.运用复变函数方法,获得了复势函数的精确解.由广义Peach-Koehler公式,导出了作用在螺型位错上的像力的精确表达式.讨论了不同参数对压电螺型位错的运动和平衡位置的影响规律.研究结果表明,对某些材料组合,当界面层的内界面是非理想界面且界面的非理想度达到一定值时,在基体中靠近界面处会出现两个位错的平衡位置,此现象未在以往研究(不考虑非理想界面)中观察到.
  • [1] Deng W F. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids[D]. Ph D Dissertation. Stanford University, 1980.
    [2] Pak Y E. Force on a piezoelectric screw dislocation[J].Journal of Applied Mechanics, 1990, 57(4): 863-869.
    [3] Xiao Z M, Yan J, Chen B J. Electroelastic analysis for a Griffith crack interacting with a coated inclusion in piezoelectric solid[J].International Journal of Engineering Science, 2005, 43(8/9): 639-654.
    [4] Kattis M A, Providas E, Kalamkarov A L. Two-phase potentials in the analysis of smart composites having piezoelectrical components[J].Composites Part B, 1998, 29(1): 9-14.
    [5] Lu P, Williams F W. Green functions of piezoelectric material with an elliptic hole or inclusion[J].International Journal of Solids and Structures, 1998, 35(7/8): 651-664.
    [6] Meguid S A, Deng W. Electro-elastic interaction between a screw dislocation and an elliptical inhomogeneity in piezoelectric materials[J]. International Journal of Solids and Structures, 1998, 35(13): 1467-1482.
    [7] Huang Z, Kuang Z B. Dislocation inside a piezoelectric media with an elliptic inhomogeneity[J].International Journal of Solids and Structures, 2001, 38(46/47): 8459-8479.
    [8] Shen M H, Chen S N, Chen F M. A piezoelectric screw dislocation interacting with a nonuniformly coated circular inclusion[J].International Journal of Engineering Science, 2006, 44(1/2): 1-13.
    [9] Liu Y W, Fang Q H, Jiang C P. Analysis of a piezoelectric screw dislocation in the interphase layer between a circular inclusion and an unbounded matrix[J].Materials Chemistry and Physics, 2006, 98(1): 14-26.
    [10] Shen M H. A magnetoelectric screw dislocation interacting with a circular layered inclusion[J].European Journal of Mechanics A/Solids, 2008, 27(3): 429-442.
    [11] Benveniste Y, Miloh T. The effective conductivity of composites with imperfect thermal contact at constituent interfaces[J].International Journal of Engineering Science, 1986, 24(9): 1537-1552.
    [12] Hashin Z. Thin interphase/imperfect interface in conduction[J].Journal of Applied Physiology, 2001, 89(4): 2262-2268.
    [13] Shen H, Schiavone P, Ru C Q, Mioduchowski A. Analysis of internal stress in an elliptic inclusion with imperfect interface in plane elasticity[J].Mathematics and Mechanics of Solids, 2000, 5(4): 501-521.
    [14] Studak L J. Interaction between a screw dislocation and a threephase circular inhomogeneity with imperfect interface[J].Mathematics and Mechanics of Solids, 2003, 8(2): 171-188.
    [15] Fan H, Sze K Y. A micomechanics model for imperfect interface in dielectric materials[J].Mechanics of Materials, 2001, 33(6): 363-370.
    [16] Chen W Q, Lee K Y. Exact solution of angle-ply piezoelectric laminates in cylindrical bending with interfacial imperfections[J].Composite Structures, 2004, 65(3/4): 329-337.
    [17] Li Y D, Lee K Y. Crack tip shielding and antishielding effects of the imperfect interface in a layered piezoelectric sensor[J].International Journal of Solids and Structures, 2009, 46(7/8): 1736-1742.
    [18] Li Y D, Lee K Y. The shielding effect of the imperfect interface on a mode III permeable crack in a layered piezoelectric sensor[J].Engineering Fracture Mechanics, 2009, 76(7): 876-883.
    [19] Wang X, Sudak L J. A piezoelectric screw dislocation interacting with an imperfect piezoelectric biomaterial interface[J].International Journal of Solids and Structures, 2007, 44(10): 3344-3358.
    [20] Jin B, Fang Q H. Piezoelectric screw dislocation interacting with a circular inclusion with imperfect interface[J].Archive of Applied Mechanics, 2008, 78(2): 105-116.
    [21] Luo H A, Chen Y. An edge dislocation in a threephase composite cylinder model[J].Journal of Applied Mechanics, 1991, 58(1): 75-86.
    [22] Xiao Z M, Chen B J. A screw dislocation interacting with a coated fiber[J].Mechanics of Materials, 2000, 32(8): 485-494.
    [23] Liu Y W, Fang Q H, Jiang C P. A piezoelectric screw dislocation interacting with an interphase layer between a circular inclusion and the matrix[J].International Journal of Solids and Structures, 2004, 41(11/12): 3255-3274.
    [24] Feng H, Fang Q H, Liu Y W, Jin B. Image force and stability of a screw dislocation inside a coated cylindrical inhomogeneity with interface stresses[J].Acta Mechanica, 2011, 220(1/4): 315-329.
    [25] Xiao Z M, Yan J, Chen B J. Electro=elastic stress analysis for a screw dislocation interacting with a coated inclusion in piezoelectric[J].Acta Mechanica, 2004, 172(3/4): 237-249.
    [26] Muskhelishvili N L.Some Basic Problems of Mathematical Theory of Elasticity[M]. Leyden: Noordhoff, 1975.
    [27] Lee L. The image force on the screw dislocation around a crack of finite size[J].Engineering Fracture Mechanics, 1987, 27(5): 539-545.
  • 加载中
计量
  • 文章访问数:  1391
  • HTML全文浏览量:  34
  • PDF下载量:  1034
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-17
  • 修回日期:  2012-09-16
  • 刊出日期:  2013-01-15

目录

    /

    返回文章
    返回