留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lagrange非结构网格高阶交错型守恒气体动力学格式

葛全文

葛全文. Lagrange非结构网格高阶交错型守恒气体动力学格式[J]. 应用数学和力学, 2014, 35(1): 92-101. doi: 10.3879/j.issn.1000-0887.2014.01.010
引用本文: 葛全文. Lagrange非结构网格高阶交错型守恒气体动力学格式[J]. 应用数学和力学, 2014, 35(1): 92-101. doi: 10.3879/j.issn.1000-0887.2014.01.010
GE Quan-wen. Lagrangian High-Order Staggered Conservative Gasdynamics Scheme on Unstructured Meshes[J]. Applied Mathematics and Mechanics, 2014, 35(1): 92-101. doi: 10.3879/j.issn.1000-0887.2014.01.010
Citation: GE Quan-wen. Lagrangian High-Order Staggered Conservative Gasdynamics Scheme on Unstructured Meshes[J]. Applied Mathematics and Mechanics, 2014, 35(1): 92-101. doi: 10.3879/j.issn.1000-0887.2014.01.010

Lagrange非结构网格高阶交错型守恒气体动力学格式

doi: 10.3879/j.issn.1000-0887.2014.01.010
基金项目: 国家自然科学基金(11172050; 11372051;11001027)
详细信息
    作者简介:

    葛全文(1960—),男,吉林人,副研究员,博士(Tel: +86-10-59872160; E-mail: ge.quanwen@iapcm.ac.cn)

  • 中图分类号: O354

Lagrangian High-Order Staggered Conservative Gasdynamics Scheme on Unstructured Meshes

Funds: The National Natural Science Foundation of China(11172050; 11372051; 11001027)
  • 摘要: 提出Lagrange(拉格朗日)非结构网格高阶交错型守恒气体动力学格式.用产生于当前时刻子网格密度和网格声速的子网格压力和MUSCL方法构造了高阶子网格力,利用高阶子网格力构造了高阶空间通量,借助时间中点通量的Taylor(泰勒)展开完成了高阶时间通量离散.研制了Lagrange非结构网格高阶交错型守恒气体动力学格式.对Saltzman活塞问题等进行了数值模拟,数值结果显示了Lagrange非结构网格高阶交错型守恒气体动力学格式的有效性和精确性.
  • [1] Browne P L, Wallick K B. The reduction of mesh tangling in two-dimensional Lagrangian hydrodynamics codes by the use of viscosity, artificial viscosity, and TTS (temporary triangular subzoning) for long-thin zones[R]. Los Alamos Laboratory Report, LA-4740-MS, 1971: 1-16.
    [2] Margolin L G, Pyun J J. A method for treating hourglass patterns[C]//Taylor C T, Habashi W G, Hafez M M, eds. Numerical Methods in Laminar and Turbulent Flow . Proceedings of the Fifth International Held at Montreal. Canada, 1987: 1-149.
    [3] Flanagan D P, Belytschko T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[J]. Int J Numer Methods Eng,1981,17(5): 649-800.
    [4] Dukowicz J K, Meltz B J A. Vorticity errors in multidimensional Lagrangian codes[J]. J Comput Phys,1992,99(1): 115-134.
    [5] von Neumann J, Richtmyer R D. A method for the numerical calculations of hydrodynamical shocks[J]. J Appl Phys,1950,21(3): 232-238.
    [6] Caramana E J, Shashkov M J, Whalen P P. Formulations of artificial viscosity for multidimensional shock wave computations[J]. J Comput Phys,1998,144(1): 70-97.
    [7] Campbell J C, Shashkov M J. A tensor artificial viscosity using a mimetic finite difference algorithm[J]. J Comput Phys,2001,172(4): 739-765.
    [8] Caramana E J, Burton D E, Shashkov M J, Whalen P P. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy[J]. J Comput Phys,1998,146(1): 227-262.
    [9] Caramana E J, Shashkov M J. Elimination of artificial grid distorsion and hourglass-type motions by means of Lagrangian subzonal masses and pressures[J]. J Comput Phys,1998,142(2): 521-561.
    [10] 葛全文. Lagrange中心型守恒格式[J]. 应用数学和力学, 2012,33(10): 1239-1256.(GE Quan-wen. Lagrangian cell-centered conservative scheme[J]. Applied Mathematics and Mechanics,2012,33(10): 1239-1256.(in Chinese))
    [11] Carré G, Del Pino S, Després B, Labourasse E. A cell-centered Lagrangian hydrodynamics scheme in arbitrary dimension[J]. J Comput Phys,2009,228(14): 5160-5183.
  • 加载中
计量
  • 文章访问数:  1286
  • HTML全文浏览量:  105
  • PDF下载量:  1097
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-18
  • 修回日期:  2013-10-11
  • 刊出日期:  2014-01-15

目录

    /

    返回文章
    返回