留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时间有限元方法的旋转柔性叶片动力学响应分析

王新栋 邓子辰 王艳 冯国春

王新栋, 邓子辰, 王艳, 冯国春. 基于时间有限元方法的旋转柔性叶片动力学响应分析[J]. 应用数学和力学, 2014, 35(4): 353-363. doi: 10.3879/j.issn.1000-0887.2014.04.002
引用本文: 王新栋, 邓子辰, 王艳, 冯国春. 基于时间有限元方法的旋转柔性叶片动力学响应分析[J]. 应用数学和力学, 2014, 35(4): 353-363. doi: 10.3879/j.issn.1000-0887.2014.04.002
WANG Xin-dong, DENG Zi-chen, WANG Yan, FENG Guo-chun. Dynamic Behavior Analysis of Rotational Flexible Blades Based on Time-Domain Finite Element Method[J]. Applied Mathematics and Mechanics, 2014, 35(4): 353-363. doi: 10.3879/j.issn.1000-0887.2014.04.002
Citation: WANG Xin-dong, DENG Zi-chen, WANG Yan, FENG Guo-chun. Dynamic Behavior Analysis of Rotational Flexible Blades Based on Time-Domain Finite Element Method[J]. Applied Mathematics and Mechanics, 2014, 35(4): 353-363. doi: 10.3879/j.issn.1000-0887.2014.04.002

基于时间有限元方法的旋转柔性叶片动力学响应分析

doi: 10.3879/j.issn.1000-0887.2014.04.002
基金项目: 国家自然科学基金(11172239;11372252);高校博士点基金(20126102110023)
详细信息
    作者简介:

    王新栋(1989—),男,山东人,硕士研究生(E-mail: dynwang@outlook.com)

  • 中图分类号: O241;V476.5

Dynamic Behavior Analysis of Rotational Flexible Blades Based on Time-Domain Finite Element Method

Funds: The National Natural Science Foundation of China(11172239; 11372252)
  • 摘要: 将时间有限元方法引入到柔性多体系统的数值计算中,研究了旋转柔性叶片系统的刚-柔耦合响应问题.首先,基于非线性梁理论,建立了旋转柔性叶片系统的中心刚体柔性梁模型,构造柔性叶片系统考虑一次近似耦合的Lagrange函数;其次,采用假设模态方法对空间坐标进行离散,建立系统的时间有限元格式;最后,通过数值实验,分析了柔性叶片的动力学响应.该方法直接构造了系统的离散积分格式,并自动保证了该格式是保辛的,因而具有较高的数值精度和稳定性.数值结果表明:时间有限元可以有效地求解旋转柔性叶片系统内低频大范围运动与高频弹性振动之间的刚-柔耦合问题.
  • [1] 陆佑方. 柔性多体系统动力学[M]. 北京: 高等教育出版社, 1996.(LU You-fang.Dynamics of Flexible Multibody Systems [M]. Beijing: Higher Education Press, 1996.(in Chinese))
    [2] 洪嘉振, 刘铸永. 刚柔耦合动力学的建模方法[J]. 上海交通大学学报, 2008,42(11): 1922-1926.(HONG Jia-zhen, LIU Zhu-yong. Modeling methods of rigid-flexible coupling dynamics[J].Journal of Shanghai Jiao Tong University,2008,42(11): 1922-1926.(in Chinese))
    [3] Winfrey R C. Dynamic analysis of elastic link mechanisms by reduction of coordinates[J].ASME Journal of Engineering for Industry,1972,94(2): 577-582.
    [4] Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J].Journal of Guidance, Control and Dynamics,1987,10(2): 139-151.
    [5] 杨辉, 洪嘉振, 余征跃. 刚-柔耦合多体系统动力学建模与数值仿真[J]. 计算力学学报, 2003,20(4): 402-408.(YANG Hui, HONG Jia-zhen, YU Zheng-yue. Dynamics modeling and numerical simulation for a rigid-flexible coupling multibody system[J].Chinese Journal of Computational Mechanics,2003,20(4): 402-408.(in Chinese))
    [6] 蔡国平, 洪嘉振. 旋转运动柔性梁的假设模态方法研究[J]. 力学学报, 2005,37(1): 48-56.(CAI Guo-ping, HONG Jia-zhen. Assumed mode method of a rotating flexible beam[J].Acta Mechanica Sinica,2005,37(1): 48-56.(in Chinese))
    [7] Shabana A A. Flexible multibody dynamics: review of past and recent developments[J].Multibody System Dynamics,1997,1(2): 189-222.
    [8] 胡海岩, 田强, 张伟, 金栋平, 胡更开, 宋燕平. 大型网架式可展开空间结构的非线性动力学与控制[J]. 力学进展. 2013,43(4): 390-414.(HU Hai-yan, TIAN Qiang, ZHANG Wei, JIN Dong-ping, HU Geng-kai, SONG Yan-ping. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes[J].Advances in Mechanics,2013,43(4): 390-414.(in Chinese))
    [9] FENG Kang. On difference schemes and symplectic geometry[C]//Proceeding of the 〖STBX〗1984 Beijing Symposium on Differential Geometry and Differential Equations . Beijing: Science Press, 1985: 42-58.
    [10] 王琪, 黄克累, 陆启韶. 树形多体Hamilton系统辛算法[J]. 计算物理, 1997,14(1): 35-39.(WANG Qi, HUANG Ke-lei, LU Qi-shao. Symplectic algorithm for Hamilton multibody system[J].Chinese Journal of Computational Physics,1997,14(1): 35-39.(in Chinese))
    [11] 钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHONG Wan-xie.Symplectic Solution Methodology in Applied Mechanics[M]. Beijing: Higher Education Press, 2006.(in Chinese))
    [12] HUANG Yong-an, DENG Zi-chen, YAO Lin-xiao. An improved symplectic precise integration method for analysis of the rotating rigid-flexible coupled system[J].Journal of Sound and Vibration, 2007,299(1/2): 229-246.
    [13] 钟万勰, 姚征. 时间有限元与保辛[J]. 机械强度, 2005,27(2): 178-183.(ZHONG Wan-xie, YAO Zheng. Time domain FEM and symplectic conservation[J].Journal of Mechanical Strength,2005,27(2): 178-183.(in Chinese))
    [14] 钟万勰, 高强. 时间-空间混和有限元[J]. 动力学与控制学报, 2007,5(1): 1-7.(ZHONG Wan-xie, GAO Qiang. Harmony element method for time and space domain[J].Journal of Dynamics and Control, 2007,5(1): 1-7.(in Chinese))
    [15] 隋永枫, 高强, 钟万勰. 陀螺系统时间有限元方法[J]. 振动与冲击, 2012,31(13): 95-98.(SUI Yong-feng, GAO Qiang, ZHONG Wan-xie. Time domain finite element method for gyroscopic systems[J].Journal of Vibration and Shock, 2012,31(13): 95-98.(in Chinese))
    [16] 杨辉. 刚柔耦合动力学系统的建模理论与实验研究[D]. 博士学位论文. 上海: 上海交通大学, 2002.(YANG Hui. Study on dynamic modeling theory and experiments for rigid-flexible coupling systems[D]. PhD Thesis. Shanghai: Shanghai Jiao Tong University, 2002.(in Chinese))
    [17] 刘向龙. 旋转柔性叶片系统动力学特性研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工业大学, 2007.(LIU Xiang-long. Dynamic characteristics research of rotating flexible blade[D]. Master Thesis. Harbin: Harbin Institute of Technology, 2007.(in Chinese))
    [18] Hairer E, Wanner G.Solving Ordinary Differential Equations Ⅱ: Stiff and Differential Algebraic Problems [M]. Springer, 1987.
  • 加载中
计量
  • 文章访问数:  1029
  • HTML全文浏览量:  110
  • PDF下载量:  851
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-11
  • 修回日期:  2014-02-20
  • 刊出日期:  2014-04-15

目录

    /

    返回文章
    返回