留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

n维糖酵解模型非常数稳态解的模式生成

魏美华 常金勇 祁兰 张巧卫

魏美华, 常金勇, 祁兰, 张巧卫. n维糖酵解模型非常数稳态解的模式生成[J]. 应用数学和力学, 2014, 35(8): 930-938. doi: 10.3879/j.issn.1000-0887.2014.08.011
引用本文: 魏美华, 常金勇, 祁兰, 张巧卫. n维糖酵解模型非常数稳态解的模式生成[J]. 应用数学和力学, 2014, 35(8): 930-938. doi: 10.3879/j.issn.1000-0887.2014.08.011
WEI Mei-hua, CHANG Jin-yong, QI Lan>, ZHANG Qiao-wei. Pattern Formation of Nonconstant Steady-State Solutions to the n-Dimensional Glycolysis Model[J]. Applied Mathematics and Mechanics, 2014, 35(8): 930-938. doi: 10.3879/j.issn.1000-0887.2014.08.011
Citation: WEI Mei-hua, CHANG Jin-yong, QI Lan>, ZHANG Qiao-wei. Pattern Formation of Nonconstant Steady-State Solutions to the n-Dimensional Glycolysis Model[J]. Applied Mathematics and Mechanics, 2014, 35(8): 930-938. doi: 10.3879/j.issn.1000-0887.2014.08.011

n维糖酵解模型非常数稳态解的模式生成

doi: 10.3879/j.issn.1000-0887.2014.08.011
基金项目: 国家自然科学基金(11271236); 陕西省教育厅科研计划资助项目(生化反应中糖酵解模型的动力学性质研究)
详细信息
    作者简介:

    魏美华(1981—),女,山西大同人,讲师,博士(通讯作者. E-mail: wei-meihua@163.com).

  • 中图分类号: O175.26

Pattern Formation of Nonconstant Steady-State Solutions to the n-Dimensional Glycolysis Model

Funds: The National Natural Science Foundation of China(11271236)
  • 摘要: 研究了一类带Neumann边界条件的n维糖酵解模型.首先,以扩散系数d1为分歧参数,运用局部分歧理论分析了该模型非常数稳态解的局部结构.其次,利用全局分歧理论和Leray-Schauder度理论讨论了非常数稳态解的全局存在性.最后,借助数值模拟证实了所得结论.分析结果表明n维糖酵解模型的空间模式可以生成.
  • [1] Dhmlow P, Vanag V K, Müller S C. Effect of solvents on the pattern formation in a Belousov-Zhabotinsky reaction embedded into a microemulsion[J]. Physical Review E,2014,89(1): 010902.
    [2] Kondo S, Miura T. Reaction-diffusion model as a framework for understanding biological pattern formation[J]. Science,2010,329(5999): 1616-1620.
    [3] 张丽, 刘三阳. 一类高次自催化耦合反应扩散系统的分歧和斑图[J]. 应用数学和力学, 2007,28(9): 1102-1114.(ZHANG Li, LIU San-yang. Bifurcation and patterns formation in a coupled higher autocatalator reaction diffusion system[J]. Applied Mathematics and Mechanics,2007,28(9): 1102-1114.(in Chinese))
    [4] Turing A M. The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences,1952,237(641): 37-72.
    [5] Murray J D. Mathematical Biology II: Spatial Models and Biomedical Applications [M]. 3rd ed. Berlin: Springer-Verlag, 2003.
    [6] 林振山, 李湘如. 准三分子模型的时空结构, 1989,9(2): 183-191.(LIN Zhen-shan, LI Xiang-ru. Spatial-temporal structure of trimolecular model[J]. Acta Mathematica Scientia,1989,9(2): 183-191.(in Chinese))
    [7] Tyson J, Kauffman S. Control of mitosis by a continuous biochemical oscillation[J]. Journal of Mathematical Biology,1975,1(4): 289-310.
    [8] Segel L A. Mathematical Models in Molecular and Cellular Biology [M]. Cambridge: Cambridge University Press, 1980.
    [9] Forbes L K, Holmes C A. Limit-cycle behaviour in a model chemical reaction: the cubic autocatalator[J]. Journal of Engineering Mathematics,1990,24(2): 179-189.
    [10] Ashkenazi M, Othmer H G. Spatial patterns in coupled biochemical oscillators[J]. Journal of Mathematical Biology,1978,5(4): 305-350.
    [11] McGough J S, Riley K.Pattern formation in the Gray-Scott model[J]. Nonlinear Analysis: Real World Applications,2004,5(1): 105-121.
    [12] 魏美华, 吴建华. 一类糖酵解模型正平衡解的存在性分析[J]. 数学学报, 2011,54(4): 553-560.(WEI Mei-hua, WU Jian-hua. Existence analysis of the positive steady-state solutions for a glycolysis model[J]. Acta Mathematica Sinica(Chinese Series),2011,54(4): 553-560.(in Chinese))
    [13] Jang J, Ni W-M, Tang M. Global bifurcation and structure of Turing patterns in 1-D Lengyel-Epstein model[J]. Journal of Dynamics and Differential Equations,2005,16(2): 297-320.
    [14] Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues[J]. Journal of Functional Analysis,1971,8(2): 321-340.
    [15] Rabinowitz P H. Some global results for nonlinear eigenvalue problems[J]. Journal of Functional Analysis,1971,7(3): 487-513.
  • 加载中
计量
  • 文章访问数:  657
  • HTML全文浏览量:  23
  • PDF下载量:  772
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-26
  • 修回日期:  2014-06-13
  • 刊出日期:  2014-08-15

目录

    /

    返回文章
    返回