## 留言板

 引用本文: 曾清红, 孙文俊. 多介质大变形流动的MOF-MMALE数值模拟研究[J]. 应用数学和力学, 2014, 35(10): 1163-1176.
ZENG Qing-hong, SUN Wen-jun. MOF-MMALE Numerical Simulation of Multi-Material Large Deformation Flow Problems[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1163-1176. doi: 10.3879/j.issn.1000-0887.2014.10.011
 Citation: ZENG Qing-hong, SUN Wen-jun. MOF-MMALE Numerical Simulation of Multi-Material Large Deformation Flow Problems[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1163-1176.

• 中图分类号: O242

## MOF-MMALE Numerical Simulation of Multi-Material Large Deformation Flow Problems

Funds: The National Natural Science Foundation of China（11001026;11371068）；The National High-tech R&D Program of China (863 Program)(2012AA01A303)
• 摘要: 多介质大变形流动数值模拟的关键和难点是在精确追踪物质界面的同时又能够处理好流体的大变形运动.将MOF（moment-of-fluid）界面重构算法与多介质任意Lagrange-Euler方法（MMALE）相耦合，形成MOFMMALE方法，并应用于多介质大变形流动问题的数值模拟研究.MOF-MMALE方法在传统的ALE方法基础上，允许计算网格边界跨过物质界面，允许存在混合网格，即一个网格内可以存在两种或两种以上物质；在混合网格内，利用MOF界面重构算法来确定物质界面的位置和方向.数值算例表明，MOF-MMALE方法是模拟多介质大变形流动的有效手段，并且具有较好的数值精度和界面分辨率.
•  [1] 裴文兵, 朱少平. 激光聚变中的科学计算[J]. 物理, 2009,38(8): 559-568.(PEI Wen-bing, ZHU Shao-ping. Scientific computing for laser fusion[J].Physics,2009,38(8): 559-568.(in Chinese)) [2] Kucharik M, Garimella R V, Schofield S P, Shashkov M J. A comparative study of interface reconstruction methods for multi-material ALE simulations[J].Journal of Computational Physics,2010,229(7): 2432-2452. [3] Benson D J. Computational methods in Lagrangian and Eulerian hydrocodes[J].Computer Methods in Applied Mechanics and Engineering,1992,99(2/3): 235-394. [4] LUO Hong, Baum J D, Lhner R. On the computation of multi-material flows using ALE formulation[J].Journal of Computational Physics,2004,194(1): 304-328. [5] Galera S, Maire P H, Breil J. A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction[J].Journal of Computational Physics,2010,229(16): 5755-5787. [6] Breil J, Galera S, Maire P H. Multi-material ALE computation in inertial confinement fusion code CHIC[J].Computer and Fluids,2011,46(1): 161-167. [7] Anbarlooei H R, Mazaheri K. Moment of fluid interface reconstruction method in multi-material arbitrary Lagrangian Eulerian (MMALE) algorithms[J].Computer Methods in Applied Mechanics and Engineering,2009,198(47/48): 3782-3794. [8] Barlow A J. Challenges and recent progress in developing numerical methods for multi-material ALE Hydrocodes[R]. ICFD 25 Year Anniversary Conference, 2008. [9] Dyadechko V, Shashkov M J. Moment-of-fluid interface reconstruction[R]. Technical Report LA-UR-05-7571, Los Alamos National Laboratory, 2005. [10] 曾清红, 孙文俊, 勇珩. 柱坐标系下的MOF 界面重构方法研究[J]. 水动力学研究与进展, 2012,27(6): 704-712.(ZENG Qing-hong, SUN Wen-jun, YONG Heng. MOF interface reconstruction method in cylindrical coordinates[J].Chinese Journal of Hydrodynamics,2012,27(6): 704-712.(in Chinese)) [11] Schofield S P, Christon M A, Dyadechko V, Garimella R V, Lowrie R B, Swartz B K. Multi-material incompressible flow simulation using the moment-of-fluid method[J].International Journal for Numerical Methods in Fluids,2010,63(8): 931-952. [12] Press W H, Teukolsky S A, Vettterling W T, Flannery B P.Numerical Recipes in C++, the Art of Scientific Computing [M]. 2nd ed. New York: Cambridge University Press, 2002. [13] Goncharov E A, Kolobyanin V Y, Sadchikov V V, Yanilkin Y V. Methods for computation of thermodynamic states of mixed cells in Lagrangian gas dynamics[R]. New Models and Hydrocodes for Shock Wave Processes in Condensed Matter, Dijon, France, 2006. [14] Caramana E J, Burton D E, Shashkov M J, Whalen P P. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy[J].Journal of Computational Physics,1998,146(1): 227-262. [15] Caramana E J, Shashkov M J, Whalen P P. Formulations of artificial viscosity for multi-dimensional shock wave computations[J].Journal of Computational Physics,1998,144(1): 70-97. [16] Caramana E J, Shashkov M J. Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian sub-zonal masses and pressures[J].Journal of Computational Physics,1998,142(2): 521-561. [17] Barlow A J. A compatible finite element multi-material ALE hydrodynamics algorithm[J].International Journal for Numerical Methods in Fluid,2008,56(8): 953-964. [18] Loubere R, Shashkov M J. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods[J].Journal of Computational Physics,2005,209(1): 105-138. [19] Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J].Journal of Fluid Mechanics,1987,181: 41-76.

##### 计量
• 文章访问数:  815
• HTML全文浏览量:  24
• PDF下载量:  626
• 被引次数: 0
##### 出版历程
• 收稿日期:  2013-10-28
• 修回日期:  2014-02-24
• 刊出日期:  2014-10-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈