留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于四元数表示的一种改进的刚体动力学保辛积分

徐小明 钟万勰

徐小明, 钟万勰. 基于四元数表示的一种改进的刚体动力学保辛积分[J]. 应用数学和力学, 2014, 35(11): 1177-1187. doi: 10.3879/j.issn.1000-0887.2014.11.001
引用本文: 徐小明, 钟万勰. 基于四元数表示的一种改进的刚体动力学保辛积分[J]. 应用数学和力学, 2014, 35(11): 1177-1187. doi: 10.3879/j.issn.1000-0887.2014.11.001
XU Xiao-ming, ZHONG Wan-xie. An Improved Symplectic Integration for Rigid Body Dynamics in Terms of Unit Quaternions[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1177-1187. doi: 10.3879/j.issn.1000-0887.2014.11.001
Citation: XU Xiao-ming, ZHONG Wan-xie. An Improved Symplectic Integration for Rigid Body Dynamics in Terms of Unit Quaternions[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1177-1187. doi: 10.3879/j.issn.1000-0887.2014.11.001

基于四元数表示的一种改进的刚体动力学保辛积分

doi: 10.3879/j.issn.1000-0887.2014.11.001
基金项目: 国家自然科学基金(面上项目)(11472067)
详细信息
    作者简介:

    徐小明(1986—),男,辽宁东港人,博士生(通讯作者. E-mail: xxm@mail.dlut.edu.cn);钟万勰(1934—),男,浙江德清人,教授,中科院院士(E-mail: zwoffice@dlut.edu.cn).

  • 中图分类号: TP391.9;O313.3

An Improved Symplectic Integration for Rigid Body Dynamics in Terms of Unit Quaternions

Funds: The National Natural Science Foundation of China(General Program)(11472067)
  • 摘要: 根据四元数刚体动力学基本理论,将四元数时间导数与角速度之间的恒等变换引入动能项,由此可以直接得到非奇异的四元数质量矩阵.将其与分析结构力学结合,可以得到4种形式的保辛积分算法.该算法以离散系统作用量变分原理代替四元数微分方程,单位长度约束以代数约束的方式在积分格点处满足.数值仿真结果表明该方法不仅避免了陀螺稳态进动数值仿真中严重的章动误差,并且对于一般情况也展现出很大的精度改善.
  • [1] Goldstein H, Poole Jr C P, Safko J L. Classical Mechanics [M]. 3rd ed. Boston: Addison Wesley, 2002.
    [2] Mclachlan R I, Scovel C. Equivariant constrained symplectic integration[J]. Journal of Nonlinear Science,1995,5(3): 233-256.
    [3] Hairer E, Lubich C, Wanner G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations [M]. Springer, 2006.
    [4] Wendlandt J M, Marsden J E. Mechanical integrators derived from a discrete variational principle[J]. Physica D: Nonlinear Phenomena,1997,106(3): 223-246.
    [5] Simo J C, Wong K K. Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum[J]. International Journal for Numerical Methods in Engineering,1991,31(1): 19-52.
    [6] Lens E V, Cardona A, Geradin M. Energy preserving time integration for constrained multibody systems[J]. Multibody System Dynamics,2004,11(1): 41-61.
    [7] Betsch P, Steinmann P. Constrained integration of rigid body dynamics[J]. Computer Methods in Applied Mechanics and Engineering,2001,191(3): 467-488.
    [8] Betsch P, Siebert R. Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration[J]. International Journal for Numerical Methods in Engineering,2009,79(4): 444-473.
    [9] Nielsen M B, Krenk S. Conservative integration of rigid body motion by quaternion parameters with implicit constraints[J]. International Journal for Numerical Methods in Engineering,2012,92(8): 734-752.
    [10] Krenk S, Nielsen M B. Conservative rigid body dynamics by convected base vectors with implicit constraints[J]. Computer Methods in Applied Mechanics and Engineering,2014,269: 437-453.
    [11] 徐小明, 钟万勰. 刚体动力学的四元数表示及保辛积分[J]. 应用数学和力学, 2014,35(1): 1-11.(XU Xiao-ming, ZHONG Wan-xie. Symplectic integration of rigid body motion by quaternion parameters[J]. Applied Mathematics and Mechanics,2014,35(1): 1-11.(in Chinese))
    [12] 钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHONG Wan-xie. Symplectic Method in Applied Mechanics [M]. Beijing: Higher Education Press, 2006.(in Chinese))
    [13] 钟万勰, 高强, 彭海军. 经典力学——辛讲[M]. 大连: 大连理工大学出版社, 2013.(ZHONG Wan-xie, GAO Qiang, PENG Hai-jun. Classical Mechanics—Its Symplectic Description [M]. Dalian: Dalian University of Technology Press, 2013. (in Chinese))
    [14] 程国采. 四元数法及其应用[M]. 长沙: 国防科技大学出版社, 1991.(CHENG Guo-cai. The Method of Quaternion and Its Application [M]. Changsha: National University of Defence Technology Press, 1991.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1445
  • HTML全文浏览量:  78
  • PDF下载量:  1418
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-26
  • 修回日期:  2014-09-11
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回