留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双参数对广义Hamilton系统稳定性的影响

陈向炜 李彦敏 梅凤翔

陈向炜, 李彦敏, 梅凤翔. 双参数对广义Hamilton系统稳定性的影响[J]. 应用数学和力学, 2014, 35(12): 1392-1397. doi: 10.3879/j.issn.1000-0887.2014.12.011
引用本文: 陈向炜, 李彦敏, 梅凤翔. 双参数对广义Hamilton系统稳定性的影响[J]. 应用数学和力学, 2014, 35(12): 1392-1397. doi: 10.3879/j.issn.1000-0887.2014.12.011
CHEN Xiang-wei, LI Yan-min, MEI Feng-xiang. Influence of Double Parameters on the Equilibrium Stability of Generalized Hamilton Systems[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1392-1397. doi: 10.3879/j.issn.1000-0887.2014.12.011
Citation: CHEN Xiang-wei, LI Yan-min, MEI Feng-xiang. Influence of Double Parameters on the Equilibrium Stability of Generalized Hamilton Systems[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1392-1397. doi: 10.3879/j.issn.1000-0887.2014.12.011

双参数对广义Hamilton系统稳定性的影响

doi: 10.3879/j.issn.1000-0887.2014.12.011
基金项目: 国家自然科学基金(11372169;10932002;11272050);河南省自然科学基金(112300410269)
详细信息
    作者简介:

    陈向炜(1967—),男,河南人,教授,博士(通讯作者. E-mail: hnchenxw@163.com).

  • 中图分类号: O316

Influence of Double Parameters on the Equilibrium Stability of Generalized Hamilton Systems

Funds: The National Natural Science Foundation of China(11372169;10932002;11272050)
  • 摘要: 研究双参数对带附加项的广义Hamilton系统稳定性的影响.首先将该系统在一定条件下化成梯度系统.其次利用梯度系统的特性来研究这类系统的稳定性及其对双参数的依赖关系.再次在参数平面给出稳定性区域.结果表明,该系统的平衡稳定性随双参数变化可能是稳定的,或渐近稳定的,也可能是不稳定的,相应给出各种稳定性对应的参数变化范围.
  • [1] Pauli W. On the Hamiltonian structure of non-local field theories[J]. II Nuovo Cimento,1953,10(5): 648-667.
    [2] Martin J L. Generalized classical dynamics and the ‘classical analogue’ of Fermi oscillator[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,1959, 251(1267): 536-542.
    [3] Maschke B M J, Ortega R, Van der Schaft A J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation[C]// Tampa, FL: Proceedings of CDC, 1998: 3599-3604.
    [4] CHENG Dai-zhan, XI Zai-rong, LU Qiang, MEI Sheng-wei. Geometric structure of a general Hamiltonian control system and its application[J]. Science in China Series E: Technological Sciences,2000,43(4): 365-379.
    [5] 张素英, 邓子辰. 广义Hamilton系统的保结构算法[J]. 计算力学学报, 2005,22(1): 47-50.(ZHANG Su-ying, DENG Zi-chen. An algorithm for preserving structure of generalized Hamilton system[J]. Chinese Journal of Computational Mechanics,2005,22(1): 47-50.(in Chinese))
    [6] 贾利群, 郑世旺. 带有附加项的广义Hamilton系统的Mei对称性[J]. 物理学报, 2006,55(8): 3829-3832.(JIA Li-qun, ZHENG Shi-wang. Mei symmetry of generalized Hamilton systems with additional terms[J]. Acta Physica Sinica,2006,55(8): 3829-3832.(in Chinese))
    [7] 姜文安, 罗绍凯. 广义Hamilton系统的Mei对称性导致的Mei守恒量[J]. 物理学报, 2011,60(6): 060201.(JIANG Wen-an, LUO Shao-kai. Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system[J]. Acta Physica Sinica,2011,60(6): 060201.(in Chinese))
    [8] Jiang W A, Luo S K. Stability for manifolds of equilibrium states of generalized Hamiltonian system[J]. Meccanica,2012,47(2): 379-383.
    [9] Jiang W A, Luo S K. A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems[J]. Nonlinear Dynamics,2012,67(1): 475-482.
    [10] 梅凤翔. 约束力学系统的对称性与守恒量[M]. 北京: 北京理工大学出版社, 2004.(MEI Feng-xiang. Symmetries and Conserved Quantities of Constrained Mechanical Systems [M]. Beijing: Beijing Institute of Technology Press, 2004.(in Chinese))
    [11] 刘畅, 刘世兴, 梅凤翔, 郭永新. 广义Hamilton系统的共形不变性与Hojman守恒量[J]. 物理学报, 2008,57(11): 6709-6713.(LIU Chang, LIU Shi-xing, MEI Feng-xiang, GUO Yong-xin. Conformal invariance and Hojman conserved quantities of generalized Hamilton systems[J].Acta Physica Sinica,2008,57(11): 6709-6713.(in Chinese))
    [12] 李继彬, 赵晓华, 刘正荣. 广义哈密顿系统理论及其应用[M]. 北京: 科学出版社, 1994.(LI Ji-bin, ZHAO Xiao-hua, LIU Zheng-rong. Theory and Application of the Generalized Hamilton System [M]. Beijing: Science Press, 1994.(in Chinese))
    [13] Olver P J. Applications of Lie Groups to Differential Equations [M]. Berlin: Springer-Verlag, 1986.
    [14] Marsden J E, Ratiu T S. Introduction to Mechanics and Symmetry [M]. Berlin: Springer-Verlag, 1994.
    [15] 梅凤翔. 广义Hamilton系统的Lie对称性与守恒量[J]. 物理学报, 2003,52(5): 1048-1050.(MEI Feng-xiang. Lie symmetry and the conserved quantity of a generalized Hamiltonian system[J]. Acta Physica Sinica,2003,52(5): 1048-1050.(in Chinese))
    [16] SHANG Mei, MEI Feng-xiang. Integrals of generalized Hamilton systems with additional terms[J]. Chinese Physics B,2005,14(9): 1707-1709.
    [17] Hirsch M W, Smale S, Devaney R L. Differential Equations, Dynamical Systems, and an Introduction to Chaos [M].Singapore: Elsevier, 2008.
  • 加载中
计量
  • 文章访问数:  609
  • HTML全文浏览量:  9
  • PDF下载量:  934
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-28
  • 修回日期:  2014-09-16
  • 刊出日期:  2014-12-15

目录

    /

    返回文章
    返回