留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速流场中6自由度物体运动的模拟研究

李涛 随晶侠 吴锤结

李涛, 随晶侠, 吴锤结. 超声速流场中6自由度物体运动的模拟研究[J]. 应用数学和力学, 2016, 37(1): 27-47. doi: 10.3879/j.issn.1000-0887.2016.01.003
引用本文: 李涛, 随晶侠, 吴锤结. 超声速流场中6自由度物体运动的模拟研究[J]. 应用数学和力学, 2016, 37(1): 27-47. doi: 10.3879/j.issn.1000-0887.2016.01.003
LI Tao, SUI Jing-xia, WU Chui-jie. Simulation of 6-DOF Rigid Bodies Moving in Supersonic Flow[J]. Applied Mathematics and Mechanics, 2016, 37(1): 27-47. doi: 10.3879/j.issn.1000-0887.2016.01.003
Citation: LI Tao, SUI Jing-xia, WU Chui-jie. Simulation of 6-DOF Rigid Bodies Moving in Supersonic Flow[J]. Applied Mathematics and Mechanics, 2016, 37(1): 27-47. doi: 10.3879/j.issn.1000-0887.2016.01.003

超声速流场中6自由度物体运动的模拟研究

doi: 10.3879/j.issn.1000-0887.2016.01.003
基金项目: 国家自然科学基金(11372068);国家重点基础研究发展计划(973计划)(2014CB744104)
详细信息
    作者简介:

    李涛(1987—),男,博士生(E-mail: litao_sysu@qq.com);吴锤结(1955—),男,教授(通讯作者. E-mail: cjwudut@dlut.edu.cn).

  • 中图分类号: O368;O354.3

Simulation of 6-DOF Rigid Bodies Moving in Supersonic Flow

Funds: The National Natural Science Foundation of China(11372068); The National Basic Research Program of China(973 Program)(2014CB744104)
  • 摘要: 物体在流场中自由运动的模拟有很广泛的应用,文章描述计算6自由度(6DOF)刚体在超声速流场中自由运动的一种方法.流体部分求解LES方程,亚网格模型为拉伸涡模型.激波和刚体边界周围区域采用迎风型WENO格式,湍流区域采用低数值耗散的TCD格式.时间推进采用三阶的SSP R-K法.刚体采用6自由度模型,刚体姿态用四元数来表示,控制方程为常微分方程,采用四阶Runge-Kutta法求解.文章给出若干算例来验证程序的有效性,结果理想.
  • [1] Lijewski L E, Suhs N E. Time-accurate computational fluid dynamics approach to transonic store separation trajectory prediction[J]. Journal of Aircraft,1994,31(4): 886-891.
    [2] Koomullil R, Cheng G, Soni B, Noack R, Prewitt N. Moving-body simulations using overset framework with rigid body dynamics[J]. Mathematics and Computers in Simulation,2008,78(5/6): 618-626.
    [3] Noack R W. DiRTlib: a library to add an overset capability to your flow solver[C]// 17th AIAA Computational Fluid Dynamics Conference . Toronto, Ontario, Canada, 2005: 5116.
    [4] Murman S M, Aftosmis M J, Berger M J. Simulations of 6-DOF motion with a Cartesian method[C]//41st AIAA Aerospace Sciences Meeting . Reno, Nevada, 2003: 1246.
    [5] Murman S M, Chan W M, Aftosmis M J, Meakin R L. An interface for specifying rigid-body motions for CFD applications[C]//41st AIAA Aerospace Sciences Meeting.Reno, Nevada, 2003: 1237.
    [6] 刘君, 白晓征, 郭正. 非结构动网格计算方法——及其在包含运动界面的流场模拟中的应用[M]. 长沙: 国防科技大学出版社, 2009.(LIU Jun, BAI Xiao-zheng, GUO Zheng. Numerical Simulation Method Using Unstructured Meshes—Including Applications Flows With Moving Interface [M]. Changsha: National University of Defense Technology Press, 2009.(in Chinese))
    [7] Martín M P, Taylor E M, Wu M, Weirs V G. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics,2006,220(1): 270-289.
    [8] Vreman B, Geurts B, Kuerten H. A priori tests of large eddy simulation of the compressible plane mixing layer[J]. Journal of Engineering Mathematics,1995,29(4): 299-327.
    [9] Vreman B. Direct and large-eddy simulation of the compressible turbulent mixing layer[D]. PhD Thesis. Enschede: University of Twente, 1995.
    [10] Martín M P, Piomelli U, Candler G V. Subgrid-scale models for compressible large-eddy simulations[J].Theoretical and Computational Fluid Dynamics,2000,13(5): 361-376.
    [11] Misra A, Pullin D I. A vortex-based subgrid stress model for large-eddy simulation[J]. Physics of Fluids,1997,9(8): 2443-2454.
    [12] Kosovi? B, Pullin D I, Samtaney R. Subgrid-scale modeling for large-eddy simulations of compressible turbulence[J]. Physics of Fluids,2002,14(4): 1511-1522.
    [13] Hill D J, Pantano C, Pullin D I. Large-eddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with reshock[J]. Journal of Fluid Mechanics,2006,557(6): 29-61.
    [14] Lesieur M, Métais O. New trends in large-eddy simulations of turbulence[J]. Annual Review of Fluid Mechanics,1996,28(1): 45-82.
    [15] Voelkl T, Pullin D I, Chan D C. A physical-space version of the stretched-vortex subgrid-stress model for large eddy simulation[J]. Physics of Fluids,2000,12(7): 1810-1825.
    [16] Pullin D I. A vortex-based model for the subgrid flux of a passive scalar[J]. Physics of Fluids,2000,12(9): 2311-2319.
    [17] 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用[M]. 北京: 清华大学出版社, 2008.(ZHANG Zhao-shun, CUI Gui-xiang, XU Chun-xiao. Theories and Applications of Large Eddy Simulation for Turbulence[M]. Beijing: Tsinghua University Press, 2008.(in Chinese))
    [18] Weirs V G, Candler G V. Optimization of weighted ENO schemes for DNS of compressible turbulence[C]//13th Computational Fluid Dynamics Conference . Snowmass Village, Colorado, 1997.
    [19] Lin S Y, Hu J J. Parametric study of weighted essentially nonoscillatory schemes for computational aeroacoustics[J]. AIAA Journal,2001,39(3): 371-379.
    [20] Mittal R, Moin P. Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows[J]. AIAA Journal,1997,35(8): 1415-1417.
    [21] Adams N A, Shariff K. A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems[J]. Journal of Computational Physics,1996,127(1): 27-51.
    [22] Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J]. Journal of Computational Physics,2002,178(1): 81-117.
    [23] Hill D J, Pullin D I. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks[J]. Journal of Computational Physics,2004,194(2): 435-450.
    [24] Zang T A. On the rotation and skew-symmetric forms for incompressible flow simulations[J]. Applied Numerical Mathematics,1991,7(1): 27-40.
    [25] Blaisdell G A. Numerical simulation of compressible homogeneous turbulence[D]. PhD Thesis. California: Stanford University, 1991.
    [26] Honein A E, Moin P. Higher entropy conservation and numerical stability of compressible turbulence simulations[J]. Journal of Computational Physics,2004,201(2): 531-545.
    [27] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics,1996,126(1): 202-228.
    [28] Mauch S. Efficient algorithms for solving static Hamilton-Jacobi equations[D]. PhD Thesis. Pasadena, California: California Institute of Technology, 2003.
    [29] Gottlieb S, Shu C W, Tadmor E. Strong stability-preserving high-order time discretization methods[J].SIAM Review,2001,43(1): 89-112.
    [30] Smart E H. Advanced Dynamics[M]. Macmillan, 1951.
    [31] Thomson W T. Introduction to space dynamics[C]// NASA STI/Recon Technical Report A . New York: Dover Publications Inc, 1986.
    [32] Glass I I, Kaca J, Zhang D L, Glaz H M, Bell J B, Trangenstein J A, Collins J P. Diffraction of planar shock waves over half-diamond and semicircular cylinders: an experimental and numerical comparison[C]//Current Topics in Shock Waves 17th International Symposium on Shock Waves and Shock Tubes . Bethlehem, Pennsylvania, 1990,208: 246-251.
    [33] Zhang D L, Glass I I. An interferometric investigation of the diffraction of planar shock waves over a half-diamond cylinder in air[R]. Toronto: University of Toronto, 1988.
    [34] Forrer H, Berger M. Flow Simulations on Cartesian grids involving complex moving geometries[C]//Hyperbolic Problems: Theory, Numerics, Applications . Basel: Birkhuser Verlag, 1999,129: 315-324.
    [35] Falcovitz J, Alfandary G, Hanoch G. A two-dimensional conservation laws scheme for compressible flows with moving boundaries[J]. Journal of Computational Physics,1997,138(1): 83-102.
    [36] Arienti M, Hung P, Morano E, Shepherd J E. A level set approach to Eulerian-Lagrangian coupling[J].Journal of Computational Physics,2003,185(1): 213-251.
    [37] Laurence S J, Deiterding R. Shock-wave surfing[J].Journal of Fluid Mechanics,2011,676(3): 396-431.
    [38] Laurence S J, Parziale N J, Deiterding R. Dynamical separation of spherical bodies in supersonic flow[J]. Journal of Fluid Mechanics,2012,713(12): 159-182.
  • 加载中
计量
  • 文章访问数:  989
  • HTML全文浏览量:  57
  • PDF下载量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-29
  • 修回日期:  2015-11-20
  • 刊出日期:  2016-01-16

目录

    /

    返回文章
    返回