留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

代表点数目对概率密度演化方法分析精度的影响

梅真 郭子雄 黄群贤 刘阳

梅真, 郭子雄, 黄群贤, 刘阳. 代表点数目对概率密度演化方法分析精度的影响[J]. 应用数学和力学, 2016, 37(1): 97-106. doi: 10.3879/j.issn.1000-0887.2016.01.008
引用本文: 梅真, 郭子雄, 黄群贤, 刘阳. 代表点数目对概率密度演化方法分析精度的影响[J]. 应用数学和力学, 2016, 37(1): 97-106. doi: 10.3879/j.issn.1000-0887.2016.01.008
MEI Zhen, GUO Zi-xiong, HUANG Qun-xian, LIU Yang. Effects of the Number of Representative Points on the Analysis Accuracy of the Probability Density Evolution Method[J]. Applied Mathematics and Mechanics, 2016, 37(1): 97-106. doi: 10.3879/j.issn.1000-0887.2016.01.008
Citation: MEI Zhen, GUO Zi-xiong, HUANG Qun-xian, LIU Yang. Effects of the Number of Representative Points on the Analysis Accuracy of the Probability Density Evolution Method[J]. Applied Mathematics and Mechanics, 2016, 37(1): 97-106. doi: 10.3879/j.issn.1000-0887.2016.01.008

代表点数目对概率密度演化方法分析精度的影响

doi: 10.3879/j.issn.1000-0887.2016.01.008
基金项目: 国家自然科学基金(51208219);福建省科技重大项目(2013Y4006);福建省自然科学基金(2015J01211)
详细信息
    作者简介:

    梅真(1983—),男,讲师,博士(通讯作者. E-mail: meizhen83@163.com).

  • 中图分类号: O324

Effects of the Number of Representative Points on the Analysis Accuracy of the Probability Density Evolution Method

Funds: The National Natural Science Foundation of China(51208219)
  • 摘要: 基于物理随机地震动模型和切球选点法生成3组不同容量地震动样本,以此作为外激励输入,采用概率密度演化方法分别对结构进行随机地震反应分析,并对分析结果进行比较,以研究代表点数目对分析精度的影响.数值分析结果表明,基于切球选点法生成的少量代表样本能够对目标总体的一、二阶统计特性进行较为准确地估计;当样本容量较小时,结构随机动力响应在各时刻的概率分布分析结果具有一定的误差.因此,应根据随机动力系统中随机变量的数目、所采用的选点方法以及预期的计算精度合理确定概率密度演化方法中样本的容量.
  • [1] 林家浩, 张亚辉. 随机振动的虚拟激励法[M]. 北京: 科学出版社, 2004.(LIN Jia-hao, ZHANG Ya-hui. Pseudo-Excitation Method for Random Vibration [M]. Beijing: Science Press, 2004.(in Chinese))
    [2] Lutes L D, Sarkani S. Random Vibrations: Analysis of Structural and Mechanical Systems[M]. Amsterdam: Elsevier, 2004.
    [3] 朱位秋. 非线性随机动力学与控制——Hamilton理论体系框架[M]. 北京: 科学出版社, 2003.(ZHU Wei-qiu. Nonlinear Stochastic Dynamics and Control—Hamilton Theoretical Framework[M]. Beijing: Science Press, 2003.(in Chinese))
    [4] 李杰, 陈建兵. 随机结构反应的概率密度演化分析[J]. 同济大学学报(自然科学版), 2003,31(12): 1387-1391.(LI Jie, CHEN Jian-bing. Probability density evolution of stochastic structural responses[J]. Journal of Tongji University(Natural Science),2003,31(12): 1387-1391.(in Chinese))
    [5] Li J, Chen J B. Probability density evolution method for dynamic response analysis of structures with uncertain parameters[J].Computational Mechanics,2004,34(5): 400-409.
    [6] Li J, Chen J B.Stochastic Dynamics of Structures [M]. Singapore: John Wiley & Sons, 2009.
    [7] 陈建兵, 李杰. 结构随机地震反应与可靠度的概率密度演化分析研究进展[J]. 工程力学, 2014,31(4): 1-10.(CHEN Jian-bing, LI Jie. Probability density evolution method for stochastic seismic response and reliability of structures[J]. Engineering Mechanics,2014,31(4): 1-10.(in Chinese))
    [8] LI Jie, CHEN Jian-bing. The dimension-reduction strategy via mapping for probability density evolution analysis of nonlinear stochastic systems[J]. Probabilistic Engineering Mechanics,2006,21(4): 442-453.
    [9] 陈建兵, 李杰. 结构随机响应概率密度演化分析的数论选点法[J]. 力学学报, 2006,38(1): 134-140.(CHEN Jian-bing, LI Jie. Strategy of selecting points via number theoretical method in probability density evolution analysis of stochastic response of structures[J]. Chinese Journal of Theoretical and Applied Mechanics,2006,38(1): 134-140.(in Chinese))
    [10] LI Jie, CHEN Jian-bing. The number theoretical method in response analysis of nonlinear stochastic structures[J]. Computational Mechanics,2007,39(6): 693-708.
    [11] 陈建兵, 李杰. 随机结构反应概率密度演化分析的切球选点法[J]. 振动工程学报, 2006,19(1): 1-8.(CHEN Jian-bing, LI Jie. Strategy of selecting points via sphere of contact in probability density evolution method for response analysis of stochastic structures[J]. Journal of Vibration Engineering,2006,19(1): 1-8.(in Chinese))
    [12] CHEN Jian-bing, LI Jie. Strategy for selecting representative points via tangent spheres in the probability density evolution method[J].International Journal for Numerical Methods in Engineering,2008,74(13): 1988-2014.
    [13] 李杰, 徐军, 陈建兵. 概率密度演化理论的拟对称点法[J]. 武汉理工大学学报, 2010,32(9): 1-5.(LI Jie, XU Jun, CHEN Jian-bing. The use of quasi-symmetric point method in probability density evolution theory[J]. Journal of Wuhan University of Technology,2010,32(9): 1-5.(in Chinese))
    [14] 李杰, 艾晓秋. 基于物理的随机地震动模型研究[J]. 地震工程与工程振动, 2006,26(5): 21-26.(LI Jie, AI Xiao-qiu. Study on random model of earthquake ground motion based on physical process[J].Earthquake Engineering and Engineering Vibration,2006,26(5): 21-26.(in Chinese))
    [15] 艾晓秋, 李杰. 基于随机Fourier谱的地震动合成研究[J]. 地震工程与工程振动, 2009,29(2): 7-12.(AI Xiao-qiu, LI Jie. Synthesis method of non-stationary ground motion based on random Fourier spectra[J].Earthquake Engineering and Engineering Vibration,2009,29(2): 7-12.(in Chinese))
    [16] 李杰, 李国强. 地震工程学导论[M]. 北京: 地震出版社, 1992.(LI Jie, LI Guo-qiang. Introduction to Earthquake Engineering [M]. Beijing: Seismological Press, 1992.(in Chinese))
    [17] 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994,34(2): 131-136.(ZHONG Wan-xie. On precise time-integration method for structural dynamics[J]. Journal of Dalian University of Technology,1994,34(2): 131-136.(in Chinese))
    [18] LI Jie, MEI Zhen, CHEN Jian-bing, PENG Yong-bo. Experimental investigations of stochastic control of randomly base-excited structures[J]. Advances in Structural Engineering,2012,15(11): 1963-1975.
  • 加载中
计量
  • 文章访问数:  875
  • HTML全文浏览量:  24
  • PDF下载量:  493
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-06
  • 修回日期:  2015-11-13
  • 刊出日期:  2016-01-16

目录

    /

    返回文章
    返回