留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绕轴线自转悬臂梁的局部限制失稳分析

肖世富 陈红永 牛红攀

肖世富, 陈红永, 牛红攀. 绕轴线自转悬臂梁的局部限制失稳分析[J]. 应用数学和力学, 2016, 37(2): 138-148. doi: 10.3879/j.issn.1000-0887.2016.02.003
引用本文: 肖世富, 陈红永, 牛红攀. 绕轴线自转悬臂梁的局部限制失稳分析[J]. 应用数学和力学, 2016, 37(2): 138-148. doi: 10.3879/j.issn.1000-0887.2016.02.003
XIAO Shi-fu, CHEN Hong-yong, NIU Hong-pan. Locally Confined Buckling Analysis of Self-Rotating Cantilever Beams[J]. Applied Mathematics and Mechanics, 2016, 37(2): 138-148. doi: 10.3879/j.issn.1000-0887.2016.02.003
Citation: XIAO Shi-fu, CHEN Hong-yong, NIU Hong-pan. Locally Confined Buckling Analysis of Self-Rotating Cantilever Beams[J]. Applied Mathematics and Mechanics, 2016, 37(2): 138-148. doi: 10.3879/j.issn.1000-0887.2016.02.003

绕轴线自转悬臂梁的局部限制失稳分析

doi: 10.3879/j.issn.1000-0887.2016.02.003
基金项目: 国家自然科学基金(11402244)
详细信息
    作者简介:

    肖世富(1970—),男,研究员,博士(E-mail: xiaosf@caep.cn);陈红永(1986—),男,助理研究员,博士(通讯作者. E-mail: lxchenhy@caep.cn).

  • 中图分类号: O317;V214.9

Locally Confined Buckling Analysis of Self-Rotating Cantilever Beams

Funds: The National Natural Science Foundation of China(11402244)
  • 摘要: 建立了任意位置限位器约束下绕轴线自转悬臂梁的非线性模型.采用Ritz法分析系统的稳定性,获得了限位器无摩擦情形下系统的限制失稳临界值、分岔模式、后屈曲解以及致稳限位器的最佳配置位置.采用有限元法对失稳临界值与致稳限位器的优化位置进行了验证,获得了一致的结果.进一步分析了限位器夹紧力和支撑力摩擦效应对系统稳定性的影响规律,获得了有益的认识.研究表明,在限位器约束下,绕轴线自转悬臂梁存在临界转速,当转速超过临界值时,梁的零挠度平衡位置将发生叉式分岔而失去稳定性;限位器夹紧力摩擦效应将使失稳后的系统在转速回复时出现明显的滞后效应,以比失稳临界值更低的转速回到原平衡位置;绕轴线自转悬臂梁系统致稳限位器的最优配置位置在梁长距固支端的78%左右等.这些成果对提升绕轴线自转悬臂梁的局部限制失稳性能的认识和指导限位器的配置具有实际意义.
  • [1] Godoy L A, Mirasso A E. On the elastic stability of static non-holonomic systems[J]. International Journal of Solids and Structures,2003,40(13/14): 3439-3462.
    [2] Chateau X, Nguyen Q S. Buckling of elastic structures in unilateral contact with or without friction[J]. European Journal of Mechanics—A/Solids,1991,10(1): 71-89.
    [3] Domokos G, Holmes P, Royce B. Constrained Euler buckling[J]. Journal of Nonlinear Science,1997,7(3): 281-314.
    [4] Chai H. The post-buckling response of a bi-laterally constrained column[J]. Journal of the Mechanics and Physics of Solids,1998,46(7): 1155-1181.
    [5] Holmes P, Domokos G, Schmitt J, Szeberényi I. Constrained Euler buckling: an interplay of computation and analysis[J]. Computer Methods in Applied Mechanics and Engineering,1999,170(3/4): 175-207.
    [6] 郭英涛, 任文敏. 关于限制失稳的研究进展[J]. 力学进展, 2004,34(1): 41-52.(GUO Ying-tao, REN Wen-min. Some advances in confined buckling[J]. Advances in Mechanics,2004,34(1): 41-52.(in Chinese))
    [7] 武秀根, 郑百林, 贺鹏飞. 限制失稳模态方程及约束载荷计算[J]. 应用力学学报, 2009,26(2): 375-378.(WU Xiu-gen, ZHENG Bai-lin, HE Peng-fei. Constrained buckling equations and reaction load of bar[J]. Chinese Journal of Applied Mechanics,2009,26(2): 375-378.(in Chinese))
    [8] Chen J S, Fang J. Deformation sequence of a constrained spatial buckled beam under edge thrust[J]. International Journal of Non-Linear Mechanics,2013,55: 98-101.
    [9] Tzaros K, Mistakidis E. The constrained buckling problem of geometrically imperfect beams: a mathematical approach for the determination of the critical instability points[J]. Meccanica,2015,50(5): 1263-1284.
    [10] Katz S, Givli S. The post-buckling behavior of a beam constrained by springy walls[J]. Journal of the Mechanics and Physics of Solids,2015,78: 443-466.
    [11] Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control, and Dynamics,1987,10(2): 139-151.
    [12] Bloch A M. Stability analysis of a rotating flexible system[J]. Acta Applicandae Mathematica,1989,15(3): 211-234.
    [13] Lee S Y, Kuo Y H. Bending frequency of a rotating beam with an elastically restrained root[J]. Journal of Applied Mechanics,1991,58(1): 209-214.
    [14] Haering W J, Ryan R R. New formulation for flexible beams undergoing large overall plane motion[J]. Journal of Guidance, Control, and Dynamics,1994,17(1): 76-83.
    [15] 肖世富, 陈滨. 中心刚体-外Timoshenko梁系统的建模与分岔特性研究[J]. 应用数学和力学, 1999,20(12): 1286-1290.(XIAO Shi-fu, CHEN Bin. Modeling and bifurcation analysis of the centre rigid-body mounted on an external Timoshenko beam[J]. Applied Mathematics and Mechanics,1999,20(12): 1286-1290.(in Chinese))
    [16] 肖世富, 陈滨. 离心场中纵向悬臂梁的大范围分岔分析[J]. 力学学报, 2000,32(5): 559-565.(XIAO Shi-fu, CHEN Bin. Global bifurcation analysis of a cantilever beam vertically fixed in centrifugal field[J]. Acta Mechanica Sinica,2000,32(5): 559-565.(in Chinese))
    [17] XIAO Shi-fu, CHEN Bin, DU Qiang. On dynamic behavior of a cantilever beam with tip mass in a centrifugal field[J]. Mechanics Based Design of Structures and Machines: An International Journal,2005,33(1): 79-98.
    [18] Xiao S F, Chen B. Dynamic characteristic and stability analysis of a beam mounted on a moving rigid body[J]. Archive of Applied Mechanics,2005,74(5/6): 415-426.
    [19] XIAO Shi-fu, CHEN Bin, YANG Min. Bifurcation and buckling analysis of a unilaterally confined self-rotating cantilever beam[J]. Acta Mechanica Sinica,2006,22(2): 177-184.
    [20] Xiao S F, Yang M. Nonlinear dynamic modeling, instability and post-buckling analysis of a rotating beam with a flexible support[J]. International Journal of Structural Stability and Dynamics,2006,6(4): 475-491.
    [21] 肖世富, 许茂. 轴对称转动粘弹性简支梁的稳定性分析[J]. 力学季刊, 2010,31(1): 64-70.(XIAO Shi-fu, XU Mao. On stability of viscoelastic simply supported beam undergoing overall axially symmetrical rotation[J]. Chinese Quarterly of Mechanics,2010,31(1): 64-70.(in Chinese))
    [22] 赵婕, 于开平, 学忠. 末端带有刚体的旋转梁运动稳定性分析[J]. 力学学报, 2013,45(4): 606-613.(ZHAO Jie, YU Kai-ping, XUE Zhong. The motion stability analysis of a rotating beam with a rigid body on its end[J]. Chinese Journal of Theoretical and Applied Mechanics,2013,45(4): 606-613.(in Chinese))
  • 加载中
计量
  • 文章访问数:  749
  • HTML全文浏览量:  41
  • PDF下载量:  613
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-23
  • 修回日期:  2015-10-15
  • 刊出日期:  2016-02-15

目录

    /

    返回文章
    返回