留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲线网格下基于粘声分离方法的流噪声计算

刘聪尉 吴方良 李环 陈灿 李鹏

刘聪尉, 吴方良, 李环, 陈灿, 李鹏. 曲线网格下基于粘声分离方法的流噪声计算[J]. 应用数学和力学, 2016, 37(4): 352-362. doi: 10.3879/j.issn.1000-0887.2016.04.003
引用本文: 刘聪尉, 吴方良, 李环, 陈灿, 李鹏. 曲线网格下基于粘声分离方法的流噪声计算[J]. 应用数学和力学, 2016, 37(4): 352-362. doi: 10.3879/j.issn.1000-0887.2016.04.003
LIU Cong-wei, WU Fang-liang, LI Huan, CHEN Can, LI Peng. Flow Noise Calculation With the Viscous Acoustic Splitting Method on Curvilinear Meshes[J]. Applied Mathematics and Mechanics, 2016, 37(4): 352-362. doi: 10.3879/j.issn.1000-0887.2016.04.003
Citation: LIU Cong-wei, WU Fang-liang, LI Huan, CHEN Can, LI Peng. Flow Noise Calculation With the Viscous Acoustic Splitting Method on Curvilinear Meshes[J]. Applied Mathematics and Mechanics, 2016, 37(4): 352-362. doi: 10.3879/j.issn.1000-0887.2016.04.003

曲线网格下基于粘声分离方法的流噪声计算

doi: 10.3879/j.issn.1000-0887.2016.04.003
详细信息
    作者简介:

    刘聪尉(1990—),男,硕士(通讯作者. E-mail:lcw_csic2012@163.com).

  • 中图分类号: U661.1

Flow Noise Calculation With the Viscous Acoustic Splitting Method on Curvilinear Meshes

  • 摘要: 在曲线网格下基于粘声分离方法对流场中的静止圆柱同声波和涡波的相互作用进行研究.首先推导了曲线坐标系下、适用于水流噪声的粘声分离方法(viscous acoustic splitting method,VASM)控制方程,并采用7点色散关系保持(dispersion-relation preserving, DRP)格式和四阶时间差分格式进行计算.然后将静止流场中圆柱壁面对声波反射的计算结果同理论值进行比较,验证了计算方法模拟水中物体对声波散射的准确性.进而模拟了旋涡行走发声的特性,并分析了流速等对声场特性的影响.
  • [1] 李环, 刘聪尉, 吴方良, 陈灿. 水动力噪声计算方法研究综述[J]. 中国舰船研究, 2016,11(2): 72-89.(LI Huan, LIU Cong-wei, WU Fang-liang, CHEN Can. A review of progress for computational methods of hydrodynamic noise[J]. Chinese Journal of Ship Research,2016,11(2): 72-89.(in Chinese))
    [2] 李晓东, 许影博, 江旻. 风力机气动噪声研究现状与发展趋势[J]. 应用数学和力学, 2013,34(10): 1083-1090.(LI Xiao-dong, XU Ying-bo, JIANG Min. Research status and trend of wind turbine aerodynamic noise[J]. Applied Mathematics and Mechanics,2013,34(10): 1083-1090.(in Chinese))
    [3] Hardin J C, Pope D S. An acoustic/viscous splitting technique for computational aeroacoustics[J]. Theoretical and Computational Fluid Dynamics,1994,6(5/6): 323-340.
    [4] Hardin J C, Pope D S. Sound generation by flow over a two-dimensional cavity[J]. AIAA Journal,1995,33(3): 407-412.
    [5] Lee D J, Koo S O. Numerical study of sound generation due to a spinning vortex pair[J]. AIAA Journal,1995,33(1): 20-26.
    [6] Ekaterinaris J A. Upwind scheme for acoustic disturbances generated by low-speed flows[J]. AIAA Journal,1997,35(9): 1448-1455.
    [7] SHEN Wen-zhong, Srensen J N. Comment on the aeroacoustic formulation of Hardin and Pope[J]. AIAA Journal,1999,37(1): 141-143.
    [8] SHEN Wen-zhong, Srensen J N. Aeroacoustic modelling of low-speed flows[J]. Theoretical and Computational Fluid Dynamics,1999,13(4): 271-289.
    [9] Slimon S A, Soteriou M C, Davis D W. Computational aeroacoustics simulations using the expansion about incompressible flow approach[J]. AIAA Journal,1999,37(4): 409-416.
    [10] Ewert R, Schrder W. Acoustic perturbation equations based on flow decomposition via source filtering[J]. Journal of Computational Physics,2003,188(2): 365-398.
    [11] ZHU Wei-jun, SHEN Wen-zhong, Srensen J N. High-order numerical simulations of flow-induced noise[J]. International Journal for Numerical Methods in Fluids,2011,66(1): 17-37.
    [12] Zheng T H, Tang S K, Shen W Z. Simulation of vortex sound using the viscous/acoustic splitting approach[J]. Transactions of the Canadian Society for Mechanical Engineering,2011,35(1): 39-56.
    [13] 宋保维, 马骥, 胡海豹, 陆翔, 刘占一. 水下航行器流噪声特性分析[J]. 鱼雷技术, 2009,17(2): 5-9.(SONG Bao-wei, MA Ji, HU Hai-bao, LU Xiang, LIU Zhan-yi. Numerical analysis of flow noise for underwater vehicle[J]. Torpedo Technology,2009,17(2): 5-9.(in Chinese))
    [14] 刘明静, 马运义. 潜艇艏部声呐流噪声计算方法研究[J]. 船海工程, 2009,38(5): 46-49.(LIU Ming-jing, MA Yun-yi. Analysis on hydrodynamic noise simulation around submarine fore region[J]. Ship & Ocean Engineering,2009,38(5): 46-49.(in Chinese))
    [15] 刘聪尉, 吴方良, 李环, 彭娅玲, 李万平. 空腔不可压缩流动特征及其声学特性研究[J]. 水动力学研究与进展(A辑), 2014,29(2): 218-224.(LIU Cong-wei, WU Fang-liang, LI Huan, PENG Ya-ling, LI Wan-ping. Investigation on the characteristics of incompressible flow and acoustic fields of cavity[J]. Chinese Journal of Hydrodynamics(Ser A),2014,29(2): 218-224.(in Chinese))
    [16] 陈灿, 吴方良, 李环, 张志国, 刘聪尉. 不可压缩空腔流振荡模式和声学特性研究[J]. 水动力学研究与进展(A辑), 2015,30(3): 127-133.(CHEN Can, WU Fang-liang, LI Huan, ZHANG Zhi-guo, LIU Cong-wei. Investigation on the oscillation mode and the acoustic characteristics of incompressible cavity flow[J]. Chinese Journal of Hydrodynamics(Ser A),2015,30(3): 127-133.(in Chinese))
    [17] Batchelor G K. An Introduction to Fluid Dynamics [M]. Cambridge: Cambridge University Press, 1967.
    [18] Tam C K W, Webb J C. Dispersion-relation-preserving finite difference schemes for computational acoustics[J]. Journal of Computational Physics,1993,107(2): 262-281.
    [19] Tam C K W. Computational Aeroacoustics: A Wave Number Approach [M]. New York: Cambridge University Press, 2012.
    [20] Tam C K W, Dong Z. Wall boundary conditions for high-order finite-difference schemes for computational aeroacoustics[J]. Theoretical and Computational Fluid Dynamics,1994,6(5): 303-322.
    [21] Tam C K W, Dong Z. Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a nonuniform mean flow[J]. Journal of Computational Acoustics,1996,4(2): 175-201.
    [22] Tam C K W, Hardin J C. Second computational aeroacoustics(CAA) workshop on benchmark problems[C]//Proceedings of a Workshop Sponsored by the National Aeronautics and Space Administration . NASA Conference Publication 3352. Tallahassee, Florida, 1997.
    [23] Povitsky A, Zheng T H, Vatistas G H. Effect of vortex profile on sound generation in a non-uniform flow[J]. Mathematics and Computers in Simulation,2004,65(4/5): 447-468.
  • 加载中
计量
  • 文章访问数:  1189
  • HTML全文浏览量:  53
  • PDF下载量:  747
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-25
  • 修回日期:  2016-01-09
  • 刊出日期:  2016-04-15

目录

    /

    返回文章
    返回