ZHANG Yu, DENG Zi-chen, ZHAO Peng. Study of Terahertz Wave Propagation in Carbon Nanotube Arrays Based on the Symplectic Formulation[J]. Applied Mathematics and Mechanics, 2016, 37(9): 889-900. doi: 10.21656/1000-0887.370164
 Citation: ZHANG Yu, DENG Zi-chen, ZHAO Peng. Study of Terahertz Wave Propagation in Carbon Nanotube Arrays Based on the Symplectic Formulation[J]. Applied Mathematics and Mechanics, 2016, 37(9): 889-900.

# Study of Terahertz Wave Propagation in Carbon Nanotube Arrays Based on the Symplectic Formulation

##### doi: 10.21656/1000-0887.370164
Funds:  The National Natural Science Foundation of China(11372252)
• Rev Recd Date: 2016-07-01
• Publish Date: 2016-09-15
• With the effective medium model, the properties of terahertz wave propagation in the periodic arrays of carbon nanotubes were investigated. In view of the nonlocal quasistatic model, the relative permittivity was derived. The symplectic formulation was used to solve the eigenvalue problem of the electromagnetic wave propagation in the periodic arrays of carbon nanotubes and the dispersion relation was obtained. The properties of electromagnetic wave propagation in arrays of vertical and tilted carbon nanotubes were given through the numerical calculation. The numerical simulation shows that the effective medium model without nonlocal spatial dispersion gives results in good agreement with those from the electrodynamical model at the frequencies within the terahertz range, thus the spatial dispersion can be ignored. The research makes a theoretical reference for the design of the propagation devices for terahertz waves.
•  [1] 刘毅, 彭晓昱, 王作斌, 董家蒙, 魏东山, 崔洪亮, 杜春雷. 基于超材料的太赫兹波吸波材料[J]. 红外技术, 2015,37(9): 756-763.(LIU Yi, PENG Xiao-yu, WANG Zuo-bin, DONG Jia-meng, WEI Dong-shan, CUI Hong-liang, DU Chun-lei. Terahertz-wave absorber based on metamaterial[J].Infrared Technology,2015,37(9): 756-763.(in Chinese)) [2] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展[J]. 物理学报, 2015,64(22): 229501.(FENG Wei, ZHANG Rong, CAO Jun-cheng. Progress of terahertz devices based on graphere[J].Acta Physica Sinica,2015,64(22): 229501.(in Chinese)) [3] 鲍迪, 沈晓鹏, 崔铁军. 太赫兹人工电磁媒质研究进展[J]. 物理学报, 2015,64(22): 228701-1-228701-9.(BAO Di, SHEN Xiao-peng, CUI Tie-jun. Progress of terahertz metamaterials[J].Acta Physica Sinica,2015,64(22): 228701-1-228701-9.(in Chinese)) [4] Chisholm M F, Wang Y H, Lupini A R, Eres G, Puretzky A A, Brinson B, Melechko A V, Geohegan D B, Cui H T, Johnson M P, Pennycook S J, Lowndes D H, Arepalli S, Kittrell C, Sivaram S, Kim M, Lavin G, Kono J, Hauge R, Smalley R E. Comment on “single crystals of single-walled carbon nanotubes formed by self-assembly”[J].Science,2003,300(5623): 1236. [5] Panzer M A, Zhang G, Mann D, Hu X, Pop E, Dai H, Goodson K E. Thermal properties of metal-coated vertically aligned single-wall nanotube arrays[J].Journal of Heat Transfer,2008,130(5): 052401. [6] Fan S S, Chapline M G, Franklin N R, Tombler T W, Cassell A M, Dai H J. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J].Science,1999,283(5401): 512-514. [7] 雷达, 孟根其其格, 张荷亮, 智颖飙. 一种平行栅碳纳米管阵列阴极的场发射特性研究[J]. 物理学报, 2013,62(24): 248502.(LEI Da, MENGGEN Qi-qi-ge, ZHANG He-liang, ZHI Ying-biao. Field emission properties from a carbon nanotube array with parallel grid[J].Acta Physica Sinica,2013,62(24): 248502.(in Chinese)) [8] Lin Y H, Lu F, Tu Y, Ren Z F. Glucose biosensors based on carbon nanotube nanoelectrode ensembles[J].Nano Letters,2004,4(2): 191-195. [9] Chiu J C, Lan Y F, Chang C M, Chen X Z, Yeh C Y, Lee C K, Lin G R, Lin J J, Cheng W H. Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse[J].Optics Express,2010,18(4): 3592-3600. [10] Wang X J, Flicker J D, Lee B J, Ready W J, Zhang Z M. Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes[J].Nanotechnology,2009,20(21): 215704. [11] Hanson G V. Fundamental transmitting properties of carbon nanotube antennas[J].IEEE Transactions on Antennas and Propagation,2005,53(11): 3426-3434. [12] Nefedov I S, Tretyakov S A, Simovski C R. An ultra-broadband electromagnetically indefinite medium formed by aligned carbon nanotubes[J].Physical Review B,2011,84(11): 113410. [13] Ferrari L, Wu C H, Lepage D, Zhang X, Liu Z W. Hyperbolic metamaterials and their applications[J].Progress in Quantum Electronics,2015,40: 1-40. [14] Nefedov I S. Electromagnetic waves propagating in a periodic array of parallel metallic carbon nanotubes[J].Physical Review B,2010,82(15): 155423. [15] Nefedov I S, Tretyakov S A. Effective medium model for two-dimensional periodic arrays of carbon nanotubes[J].Photonics and Nanostructures-Fundamentals and Applications,2011,9(4): 374-380. [16] Hashemi S M, Nefedov I S. Wideband perfect absorption in arrays of tilted carbon nanotubes[J].Physical Review B,2012,86(19): 195411. [17] 陈杰夫, 郑长良, 钟万勰. 电磁波导的辛分析与对偶棱边元[J]. 物理学报, 2006,55(5): 2340-2346.(CHEN Jie-fu, ZHENG Chang-liang, ZHONG Wan-xie. Symplectic analysis and dual edge element for electromagnetic waveguide[J].Acta Physica Sinica,2006,55(5): 2340-2346.(in Chinese)) [18] 杨红卫, 钟万勰, 侯碧辉. 力学、热力学及电磁波导中的正则变换和辛描述[J]. 物理学报, 2010,59(7): 4437-4441.(YANG Hong-wei, ZHONG Wan-xie, HOU Bi-hui. The canonical transformation and symplectic description in mechanics, thermodynamics and electromagnetic waveguide[J].Acta Physica Sinica,2010,59(7): 4437-4441.(in Chinese)) [19] 赵鹏, 邓子辰, 张宇. 辛体系下THz波在碳纳米管阵列中的传播[J]. 应用数学和力学, 2015,36(9): 905-913.(ZHAO Peng, DENG Zi-chen, ZHANG Yu. THz wave propagation in carbon nanotube arrays under the symplectic system[J].Applied Mathematics and Mechanics,2015,36(9): 905-913.(in Chinese)) [20] 张宇, 邓子辰, 赵鹏. 辛体系下倾斜碳纳米管阵列波导研究[J]. 应用数学和力学, 2016,37(2): 127-137.(ZHANG Yu, DENG Zi-chen, ZHAO Peng. Study of THz wave propagation in tilted carbon nanotube arrays based on symplectic formulation[J].Applied Mathematics and Mechanics,2016,37(2): 127-137.(in Chinese)) [21] 钟万勰. 变截面电磁波导的辛分析[J]. 力学季刊, 2001,22(3): 273-280.(ZHONG Wan-xie .Symplectic analysis for electro-magnetic wave guide with varied cross sections[J].Chinese Quarterly of Mechanics,2001,22(3): 273-280.(in Chinese)) [22] 孙雁, 钟万勰. 电磁波导的通过谱计算[J]. 计算力学学报, 2006,23(6): 663-667.(SUN Yan, ZHONG Wan-xie. Symplectic theory of electro-magnetic wave-guide[J].Chinese Journal of Computational Mechanics,2006,23(6): 663-667.(in Chinese)) [23] 孙雁, 钟万勰. 电磁共振腔的节点有限元法[J]. 动力学与控制学报, 2011,9(1): 1-6.(SUN Yan, ZHONG Wan-xie. Node finite element method for electro-magnetic resonant cavity[J].Journal of Dynamics and Control,2011,9(1): 1-6.(in Chinese)) [24] Maslovski S I, Silveirinha M G. Nonlocal permittivity from a quasistatic model for a class of wire media[J].Physical Review B,2009,80(24): 245101. [25] Burke P J, Li S D, Yu Z. Quantitative theory of nanowire and nanotube antenna performance[J].IEEE Transactions on Nanotechnology,2006,5(4): 314-334. [26] Belov P A, Marques R, Maslovski S I, Nefedov I S, Silveirinha M, Simovski C R, Tretyakov S A. Strong spatial dispersion in wire media in the very large wavelength limit[J].Physical Review B,2003,67(11): 113103. [27] 郑宏兴, 葛德彪, 张成. 金属表面各向异性涂层的反射系数[J]. 西安电子科技大学学报, 2000,27(5): 590-593.(ZHENG Hong-xing, GE De-biao, ZHANG Cheng. Reflection coefficient of anisotropic coat on the metal surface[J].Journal of Xidian University,2000,27(5): 590-593.(in Chinese))

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142