ZHAO Yingying, HU Hua. Dynamic Behaviors of Stochastically Delayed SIRS Epidemic Models With Standard Incidence Rates Under Information Intervention[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1373-1388. doi: 10.21656/1000-0887.400031
 Citation: ZHAO Yingying, HU Hua. Dynamic Behaviors of Stochastically Delayed SIRS Epidemic Models With Standard Incidence Rates Under Information Intervention[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1373-1388.

# Dynamic Behaviors of Stochastically Delayed SIRS Epidemic Models With Standard Incidence Rates Under Information Intervention

##### doi: 10.21656/1000-0887.400031
Funds:  The National Natural Science Foundation of China（11361044）
• Rev Recd Date: 2019-05-16
• Publish Date: 2019-12-01
• A class of stochastic-time-delay SIRS infectious disease models with standard incidence under information intervention were considered. A stopping time was defined. Then the existence of a unique global positive solution was proved through construction of a suitable Lyapunov function to prove the stopping time is infinite. The asymptotic behaviors of the model solution around the disease-free equilibrium point and the endemic equilibrium point of the deterministic model were studied with suitable Lyapunov functions respectively. The results show that, the solution of the stochastic system involves random vibration around the 2 equilibrium points under certain conditions respectively.
•  [1] KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics: Ⅰ[J]. Bulletin of Mathematical Biology,1991,53(1): 33-55. [2] MA Z E, ZHOU Y C, WU J H. Modeling and Dynamics of Infectious Diseases [M]. Beijing: Higher Education Press, 2009. [3] LIU Q, CHEN Q. Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence[J]. Physica A: Statistical Mechanics and Its Applications,2015,428(1):140-153. [4] LAHROUZ A, OMARI L, KIOUACH D, et al. Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination[J]. Applied Mathematics and Computation,2012,218(1): 6519-6525. [5] UN I W, JANN T W, SHAN C C, et al. Impacts of a mass vaccination campaign against pandemic H1N1 2009 influenza in Taiwan: a time-series regression analysis[J]. International Journal of Infectious Diseases,2014,23: 82-89. [6] KUMAR A, SRIVASTAVA P K, TAKEUCHI Y. Modeling the role of information and limited optimal treatment on disease prevalence[J]. Journal of Theoretical Biology,2017,414(1): 103-119. [7] PAINTER J E, DICLEMENTE R J, VON FRICKEN M E. Interest in an Ebola vaccine among a US national sample during the height of the 2014—2016 Ebola outbreak in West Africa[J]. Vaccine,2017,35(4): 508-512. [8] SHIWANI H A, PHARITHI R B, KHAN B, et al. An update on the 2014 Ebola outbreak in West Africa[J]. Asian Pacific Journal of Tropical Medicine,2017,10(1): 6-10. [9] ZHANG T L, LIU J L, TENG Z D. Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure[J]. Nonlinear Analysis: Real World Applications,2010,11(1): 293-306. [10] ZHANG F P, LI Z Z, ZHANG F. Global stability of an SIR epidemic model with constant infectious period[J]. Applied Mathematics and Computation,2008,199(1): 285-291. [11] QI L X, CUI J A. The stability of an SEIRS model with nonlinear incidence, vertical transmission and time delay[J]. Applied Mathematics and Computation,2013,221(1): 360-366. [12] COOKE K L. Stability analysis for a vector disease model[J]. Rocky Mountain Journal of Mathematics,1979,9(1). DOI: 10. 1216/RMJ-1979-9-1-31. [13] HEFFERNAN J M, SMITH R J, WAHL L M. Perspectives on the basic reproductive ratio[J]. Journal of the Royal Society Interface,2005,2(4): 281-293. [14] CAI Y, KANG Y, BANERJEE M, et al. A stochastic SIRS epidemic model with infectious force under intervention strategies[J]. Journal of Differential Equations,2015,259(12): 7463-7502. [15] MAO X R. Stochastic Differential Equations and Applications [M]. Chichester: Horwood Publishing Limited, 1997. [16] IKEDA N, WATANABE S. Stochastic Differential Equations and Diffusion Processes [M]. New York: North-Holland, 1981.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142