ZHOU Qiang, ZHANG Zhichun, LONG Zhilin, WU Jingxiang, HUANG Bin, JIN Hua. Vibration of Piezoelectric Nanobeams With Surface Effects[J]. Applied Mathematics and Mechanics, 2020, 41(8): 853-865. doi: 10.21656/1000-0887.400330
Citation: ZHOU Qiang, ZHANG Zhichun, LONG Zhilin, WU Jingxiang, HUANG Bin, JIN Hua. Vibration of Piezoelectric Nanobeams With Surface Effects[J]. Applied Mathematics and Mechanics, 2020, 41(8): 853-865. doi: 10.21656/1000-0887.400330

Vibration of Piezoelectric Nanobeams With Surface Effects

doi: 10.21656/1000-0887.400330
Funds:  The National Natural Science Foundation of China(51471139)
  • Received Date: 2019-10-30
  • Rev Recd Date: 2019-12-25
  • Publish Date: 2020-08-01
  • One-dimensional piezoelectric nanomaterials are widely used in MEMS/NEMS systems, and it is important to effectively characterize their mechanical properties. Based on the Gurtin-Murdoch surface theory, a new model for one-dimensional nanomaterials with surface effects was established. Based on the Timoshenko beam theory, the governing equations for piezoelectric nanowires with surface effects were derived, and the exact solutions of frequency equations and mode equations for piezoelectric nanowires under different boundary conditions were obtained. A method to simulate the surface effects with the finite element software was proposed, and the numerical simulation of piezoelectric nanobeams with surface effects was realized in ABAQUS. The theoretical results are in good agreement with the finite element simulation results, which verifies the correctness and validity of the theoretical model. The surface effect was very significant to the vibration frequencies of nanobeams and somewhat influences the mode shapes.
  • loading
  • [1]
    ZHAO M H, WANG Z G, MAO S X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope[J]. Nano Letters,2004,4(4): 587-590.
    [2]
    RAMPRASAD R, SHI N. Dielectric properties of nanoscale HfO2 slabs[J]. Physical Review B,2005,72(5): 052107. DOI: 10.1103/PhysRevB.72.052107.
    [3]
    WANG Z L. ZnO nanowire and nanobelt platform for nanotechnology[J]. Materials Science and Engineering: R,2009,64(3/4): 33-71.
    [4]
    AIZPURUA J, BRYANT G W, RICHTER L J, et al. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy[J]. Physical Review B,2005,71(23): 235420. DOI: 10.1103/PhysRevB.71.235420.
    [5]
    MARANGONI V S, CANCINO-BERNARDI J, ZUCOLOTTO V. Synthesis, physico-chemical properties, and biomedical applications of gold nanorods: a review[J].Journal of Biomedical Nanotechnology,2016,12(6): 1136-1158.
    [6]
    HU X L, YU JC, GONG J M, et al.α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties[J]. Advanced Materials,2007,19(17): 2324-2329.
    [7]
    NGUYEN N T, HUANG X Y, CHUAN T K. MEMS-micropumps: a review[J]. Journal of Fluids Engineering,2002,124(2): 384-392.
    [8]
    GRAYSON A C R, SHAWGO R S, JOHNSON A M, et al. A BioMEMS review: MEMS technology for physiologically integrated devices[J]. Proceedings of the IEEE,2004,92(1): 6-21.
    [9]
    张中太, 林元华, 唐子龙, 等. 纳米材料及其技术的应用前景[J]. 材料工程, 2000,3(7): 42-48.(ZHANG Zhongtai, LIN Yuanhua, TANG Zilong, et al. Nanometer materials & nanotechology and their application prospect[J]. Journal of Materials Engineering,2000,3(7): 42-48.(in Chinese))
    [10]
    徐晓建, 邓子辰. 非局部因子和表面效应对微纳米材料振动特性的影响[J]. 应用数学和力学, 2013,34(1): 10-17.(XU Xiaojian, DENG Zichen. Surface effects of adsorption induced resonance analysis of micro/nanobeams via nonlocal elasticity[J]. Applied Mathematics and Mechanics,2013,34(1): 10-17.(in Chinese))
    [11]
    YUE Y M, XU K Y, ZHANG X D, et al. Effect of surface stress and surface-induced stress on behavior of piezoelectric nanobeam[J]. Applied Mathematics and Mechanics,2018,39(7): 953-966.
    [12]
    MILLER R E, SHENOY V B. Size-dependent elastic properties of nanosized structural elements[J]. Nanotechnology,2000,11(3): 139.
    [13]
    ZHANG J, WANG C Y, CHOWDHURY R, et al. Small-scale effect on the mechanical properties of metallic nanotubes[J]. Applied Physics Letters,2012,101(9): 093109. DOI: 10.1063/1.4748975.
    [14]
    GURTIN M E, MURDOCH A I. A continuum theory of elastic material surfaces[J]. Archive for Rational Mechanics and Analysis,1975,57(4): 291-323.
    [15]
    EREMEYEV V A. On effective properties of materials at the nano-and microscales considering surface effects[J]. Acta Mechanica,2016,227(1): 29-42.
    [16]
    HE L H, LIM C W, WU B S. A continuum model for size-dependent deformation of elastic films of nano-scale thickness[J]. International Journal of Solids and Structures,2004,41(3/4): 847-857.
    [17]
    MICHALSKI P J, SAI N, MELE E J. Continuum theory for nanotube piezoelectricity[J]. Physical Review Letters,2005,95(11): 116803. DOI: 10.1103/PhysRevLett.95.116803.
    [18]
    WANG G F, FENG X Q. Effect of surface stresses on the vibration and buckling of piezoelectric nanowires[J]. EPL(Europhysics Letters),2010,91(5): 56007. DOI: 10.1209/0295-5075/91/56007.
    [19]
    YAN Z, JIANG L Y. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects[J]. Nanotechnology,2011,22(24): 245703. DOI: 10.1088/0957-4484/22/24/245703.
    [20]
    YAN Z, JIANG L Y. Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires[J]. Journal of Physics D: Applied Physics,2011,44(7): 075404. DOI: 10.1088/0022-3727/44/7/075404.
    [21]
    ZHENG S J, ZHAO X, WANG H T. Theoretical and finite element modeling of piezoelectric nanobeams with surface and flexoelectricity effects[J]. Mechanics of Advanced Materials and Structures,2019,26(15): 1261-1270.
    [22]
    KE L L, WANG Y S, WANG Z D. Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory[J]. Composite Structures,2012,94(6): 2038-2047.
    [23]
    WU J X, LI X F, TANG A Y, et al. Free and forced transverse vibration of nanowires with surface effects[J]. Journal of Vibration and Control,2017,23(13): 2064-2077.
    [24]
    ROUHI H, EBRAHIMI F, ANSARI R, et al. Nonlinear free and forced vibration analysis of Timoshenko nanobeams based on Mindlin's second strain gradient theory[J]. European Journal of Mechanics a: Solids,2019,73: 268-281.
    [25]
    AVDIAJ S, SETINA J, SYLA N. Modeling of the piezoelectric effectusing the finite-element method(FEM)[J]. Materiali in Tehnologije,2009,43(6): 283-291.
    [26]
    邢沁妍, 杨青浩, 陆琛宇, 等. 杆件轴向受迫振动的Galerkin有限元EEP法自适应求解[J]. 应用数学和力学, 2019,40(9): 945-956.(XING Qinyan, YANG Qinghao, LU Chenyu, et al. An EEP adaptive strategy of the Galerkin FEM for axially forced vibration of bars[J]. Applied Mathematics and Mechanics,2019,40(9): 945-956.(in Chinese))
    [27]
    MOHTASHAMI M, BENI Y T. Size-dependent buckling and vibrations of piezoelectric nanobeam with finite element method[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering,2019,43(3): 563-576.
    [28]
    VISWANATH R N, KRAMER D, WEISSMLLER J. Variation of the surface stress-charge coefficient of platinum with electrolyte concentration[J]. Langmuir,2005,21(10): 4604-4609.
    [29]
    FRIESEN C, DIMITROV N, CAMMARATA R C, et al. Surface stress and electrocapillarity of solid electrodes[J]. Langmuir,2001,17(3): 807-815.
    [30]
    HAISS W, NICHOLS R J, SASS J K, et al. Linear correlation between surface stress and surface charge in anion adsorption on Au(111)[J]. Journal of Electroanalytical Chemistry,1998,452(2): 199-202.
    [31]
    HUANG G Y, YU S W. Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring[J]. Physica Status Solidi(B),2006,243(4): R22-R24.
    [32]
    CHEN T Y, CHIU M S, WENG C N. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids[J]. Journal of Applied Physics,2006,100(7): 074308. DOI: 10.1063/1.2356094.
    [33]
    HE Q L, LILLEY C M. Resonant frequency analysis of Timoshenko nanowires with surface stress for different boundary conditions[J]. Journal of Applied Physics,2012,112(7): 074322. DOI: 10.1063/1.4757593.
    [34]
    吴金根, 高翔宇, 陈建国, 等. 高温压电材料、器件与应用[J]. 物理学报, 2018,67(20): 207701.(WU Jianguo, GAO Xiangyu, CHEN Jianguo, et al. Review of high temperature piezoelectric materials, devices, and applications[J]. Acta Physica Sinica,2018,67(20): 207701.(in Chinese))
    [35]
    YAN Z, JIANG L Y. Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects[J]. Journal of Physics D: Applied Physics,2011,44(36): 365301. DOI: 10.1088/0022-3727/44/36/365301.
    [36]
    WANG G F, FENG X Q. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams[J]. Applied Physics Letters,2007,90(23): 231904. DOI: 10.1063/1.2746950.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1383) PDF downloads(329) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return