Volume 45 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
WANG Huiping, WANG Guixia, CHEN Decai. Boundary Element Analysis for the Plane Elasticity Problems of Finite Icosahedral Quasicrystal Plates Containing Elliptical Holes[J]. Applied Mathematics and Mechanics, 2024, 45(4): 400-415. doi: 10.21656/1000-0887.440241
Citation: WANG Huiping, WANG Guixia, CHEN Decai. Boundary Element Analysis for the Plane Elasticity Problems of Finite Icosahedral Quasicrystal Plates Containing Elliptical Holes[J]. Applied Mathematics and Mechanics, 2024, 45(4): 400-415. doi: 10.21656/1000-0887.440241

Boundary Element Analysis for the Plane Elasticity Problems of Finite Icosahedral Quasicrystal Plates Containing Elliptical Holes

doi: 10.21656/1000-0887.440241
  • Received Date: 2023-08-14
  • Rev Recd Date: 2023-12-12
  • Publish Date: 2024-04-01
  • Based on the extended Stroh method, a boundary element analysis was conducted for the plane elasticity problem of finite-sized icosahedral quasicrystal plates with elliptical holes. Firstly, the extended Stroh method was used to study Green's function for the icosahedral quasicrystal, to obtain the fundamental solutions of displacements and stresses of the plane elasticity problem about infinite-sized icosahedral quasicrystal plates with elliptical holes. With these fundamental solutions, the weighted residual method was employed to establish the integral equations within the domain and on the boundary, and the linear interpolation functions and the Gaussian integration were used to discretize the boundary integral equations and the domain integral equations with unknown variables, respectively. Furthermore, the stress at the hole boundary was numerically solved, and the numerical results of the finite-sized plate were compared with the analytical solution of the infinite-sized plate to demonstrate that, the analytical solution of the infinite-sized plate cannot be used for the analysis of the finite-sized plate with the ratio of the plate size to the hole size below a certain threshold. Finally, the effects of the plate size, the hole size, and the inclination angle on the stress at the hole boundary were analyzed under tensile loading in the vertical direction. The results show that, the variation of the plate size along the vertical tensile direction has a more significant effect on the stress at the hole boundary. As the elliptical hole size increases, the stress concentration phenomenon becomes more pronounced. If the major axis is perpendicular to the vertical tensile direction, the inclination of the elliptical hole will mitigate the degree of stress concentration at the hole boundary.
  • loading
  • [1]
    YANG W G, DING D H, WANG R H, et al. Thermodynamics of equilibrium properties of quasicrystals[J]. Zeitschrift für Physik B: Condensed Matter, 1997, 100: 447-454. doi: 10.1007/s002570050146
    [2]
    范天佑. 准晶数学弹性理论及应用[M]. 北京: 北京理工大学出版社, 1999.

    FAN Tianyou. Quasicrystal Mathematical Elasticity Theory and Its Application[M]. Beijing: Beijing Institute of Technology Press, 1999. (in Chinese)
    [3]
    祝爱玉. 三维准晶弹性高阶偏微分方程的解析解和准晶的弹性动力学研究[D]. 北京: 北京理工大学, 2009.

    ZHU Aiyu. Analysis solutions of high order partial differential equations of three-dimentional quasicrystals in elasticity and elasto-hydro dynamics of quasicrystals[D]. Beijing: Beijing Institute of Technology, 2009. (in Chinese)
    [4]
    HWU C, YEN W J. Green's functions of two-dimensional anisotropic plates containing an elliptic hole[J]. International Journal of Solids and Structures, 1991, 27(13): 1705-1719. doi: 10.1016/0020-7683(91)90070-V
    [5]
    舒小敏, 李坚. 基于边界元法求解三维弹性摩擦接触问题[J]. 计算力学学报, 2022, 39(5): 557-565. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202205004.htm

    SHU Xiaomin, LI Jian. Solving 3D elastic friction contact problem by boundary element method[J]. Chinese Journal of Computational Mechanics, 2022, 39(5): 557-565. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202205004.htm
    [6]
    XU X L, RAJAPAKSE R. Boundary element analysis of piezoelectric solids with defects[J]. Composites Part B: Engineering, 1998, 29(5): 655-669. doi: 10.1016/S1359-8368(98)00022-5
    [7]
    LIANG Y C, HWU C. Electromechanical analysis of defects in piezoelectric materials[J]. Smart Materials and Structures, 1996, 5(3): 314-320. doi: 10.1088/0964-1726/5/3/009
    [8]
    袁彦鹏. 准晶材料平面断裂问题分析[D]. 郑州: 郑州大学, 2018.

    YUAN Yanpeng. Analysis of plane fracture problem of quasicrystal[D]. Zhengzhou: Zhengzhou University, 2018. (in Chinese)
    [9]
    陈帅. 一维六方准晶复合材料平面断裂问题研究[D]. 郑州: 郑州大学, 2019.

    CHEN Shuai. Study on plane fracture problem of one-dimensional hexagonal quasicrystal bi-material[D]. Zhengzhou: Zhengzhou University, 2019. (in Chinese)
    [10]
    潘先云, 余江鸿, 周枫林. 非齐次弹性力学问题双互易边界元方法研究[J]. 应用数学和力学, 2022, 43(9): 1004-1015. doi: 10.21656/1000-0887.420208

    PAN Xianyun, YU Jianghong, ZHOU Fenglin. Research on the dual reciprocity boundary element method for non-homogeneous elasticity problems[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1004-1015. (in Chinese) doi: 10.21656/1000-0887.420208
    [11]
    翟婷, 马园园, 赵雪芬. 三维二十面体准晶圆弧形界面刚性线的平面弹性问题[J/OL]. 应用力学学报, 2023[2023-12-12]. https://kns.cnki.net/kcms/detail//61.1112.O3.20230223.1117.004.html.

    ZHAI Ting, MA Yuanyuan, ZHAO Xuefen. The plane elasticity problem of circular arc interface rigid lines in three-dimensional icosahedral quasicrystals[J/OL]. Chinese Journal of Applied Mechanics, 2023[2023-12-12]. https://kns.cnki.net/kcms/detail//61.1112.O3.20230223.1117.004.html. (in Chinese)
    [12]
    WANG J B, MANCINI L, WANG R, et al. Phonon-and phason-type spherical inclusions in icosahedral quasicrystals[J]. Journal of Physics: Condensed Matter, 2003, 15(24): L363- L370. doi: 10.1088/0953-8984/15/24/102
    [13]
    FAN T Y, GUO L H. The final governing equation and fundamental solution of plane elasticity of icosahedral quasicrystals[J]. Physics letters A, 2005, 341 (1/4): 235-239.
    [14]
    DING D H, YANG W G, HU C Z, et al. Generalized elasticity theory of quasicrystals[J]. Physical Review B, 1993, 48(10): 7003-7010. doi: 10.1103/PhysRevB.48.7003
    [15]
    GAO Y, RICOEUR A, ZHANG L. Plane problems of cubic quasicrystal media with an elliptic hole or a crack[J]. Physics Letters A, 2011, 375(28/29): 2775-2781.
    [16]
    LI L H, LIU G T. Stroh formalism for icosahedral quasicrystal and its application[J]. Physics Letters A, 2012, 376(28/29): 987-990.
    [17]
    YANG L Z, ANDREAS R, HE F M, et al. Finite size specimens with cracks of icosahedral Al-Pd-Mn quasicrystals[J]. Chinese Physics B, 2014, 23(5): 056102. doi: 10.1088/1674-1056/23/5/056102
    [18]
    LI L H. Generalized 2D problem of icosahedral quasicrystals containing an elliptic hole[J]. Chinese Physics B, 2013, 22(11): 116101. doi: 10.1088/1674-1056/22/11/116101
    [19]
    QIN Q H. Thermoelectroelastic Green's function for a piezoelectric plate containing an elliptic hole[J]. Mechanics of Materials, 1998, 30(1): 21-29. doi: 10.1016/S0167-6636(98)00022-2
    [20]
    张炳彩, 丁生虎, 张来萍. 一维六方准晶双材料中圆孔边共线界面裂纹的反平面问题[J]. 应用数学和力学, 2022, 43(6): 639-647. doi: 10.21656/1000-0887.420202

    ZHANG Bingcai, DING Shenghu, ZHANG Laiping. The anti-plane problem of collinear interface cracks emanating from a circular hole in 1D hexagonal quasicrystal bi-materials[J]. Applied Mathematics and Mechanics, 2022, 43(6): 639-647. (in Chinese) doi: 10.21656/1000-0887.420202
    [21]
    卢绍楠, 赵雪芬, 马园园. 一维六方压电准晶双材料界面共线裂纹问题[J]. 应用数学和力学, 2023, 44(7): 809-824. doi: 10.21656/1000-0887.430111

    LU Shaonan, ZHAO Xuefen, MA Yuanyuan. Research on interfacial collinear cracks between 1D hexagonal piezoelectric quasicrystal bimaterials[J]. Applied Mathematics and Mechanics, 2023, 44(7): 809-824. (in Chinese) doi: 10.21656/1000-0887.430111
    [22]
    尹姝媛, 周旺民, 范天佑. 八次对称二维准晶中的Ⅱ型裂纹[J]. 应用数学和力学, 2002, 23(4): 376-380. http://www.applmathmech.cn/article/id/1803

    YIN Shuyuan, ZHOU Wangmin, FAN Tianyou. A mode Ⅱ crack in a two-dimensional octagonal quasicrystals[J]. Applied Mathematics and Mechanics, 2002, 23(4): 376-380. (in Chinese) http://www.applmathmech.cn/article/id/1803
    [23]
    LU P, WILLIAMS W. Green functions of piezoelectric material with an elliptic hole or inclusion[J]. International Journal of Solids and Structures, 1998, 35(7/8): 651-664.
    [24]
    ZHOU Y B, LI X F. Fracture analysis of an infinite 1D hexagonal piezoelectric quasicrystal plate with a penny-shaped dielectric crack[J]. European Journal of Mechanics A: Solids, 2019, 76: 224-234. doi: 10.1016/j.euromechsol.2019.04.011
    [25]
    KAMEL M, LIAW M. Green's functions due to concentrated moments applied in an anisotropic plane with an elliptic hole or a crack[J]. Mechanics Research Communications, 1989, 16(5): 311-319. doi: 10.1016/0093-6413(89)90071-2
    [26]
    GUO J H, YU J, XING Y M, et al. Thermoelastic analysis of a two-dimensional decagonal quasicrystal with a conductive elliptic hole[J]. Acta Mechanica, 2016, 227(9): 2595-2607. doi: 10.1007/s00707-016-1657-7
    [27]
    ZHAO X F, LI X, DING S H. Two kinds of contact problems in three-dimensional icosahedral quasicrystals[J]. Applied Mathematics and Mechanics(English Edition), 2015, 36(12): 1569-1580. doi: 10.1007/s10483-015-2006-6
    [28]
    WANG X F, FAN T Y, ZHU A Y. Dynamic behaviour of the icosahedral Al-Pd-Mn quasicrystal with a Griffith crack[J]. Chinese Physics B, 2009, 18(2): 709-714. doi: 10.1088/1674-1056/18/2/050
    [29]
    吴祥法, 范天佑, 安冬梅. 用路径守恒积分计算平面准晶裂纹扩展的能量释放率[J]. 计算力学学报, 2000, 17(1): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200001005.htm

    WU Xiangfa, FAN Tianyou, AN Dongmei. Energy release rate of plane quasicrystals with crack determined by path-independent E-integral[J]. Chinese Journal of Computational Mechanics, 2000, 17(1): 34-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200001005.htm
    [30]
    吴云龙. 十面体准晶和二十面体准晶动态断裂的有限差分分析[D]. 北京: 北京理工大学, 2013.

    WU Yunlong. Finite difference analysis of dynamic fracture in decagonal and icosahedral quasicrystals[D]. Beijing: Beijing Institute of Technology, 2013. (in Chinese)
    [31]
    杨连枝, 张亮亮, 孙振东, 等. 二十面体准晶的有限元模拟方法[C]//中国力学大会: 2013论文摘要集. 工程科技I辑, 2013.

    YANG Lianzhi, ZHANG Liangliang, SUN Zhendong, et al. Finite element simulation of icosahedral quasicrystals[C]//Chinese Mechanics Congress: 2013 Abstracts Collection. Engineering Technology Series I, 2013. (in Chinese)
    [32]
    杨连枝, 何蕃民, 高阳. 二十面体Al-Pd-Mn准晶板的断裂行为研究[C]//北京力学会第20届学术年会论文集. 北京: 中国学术期刊电子出版社, 2014: 2.

    YANG Lianzhi, HE Fanmin, GAO Yang. Study of fracture behavior of icosahedral Al-Pd-Mn quasicrystal slab[C]//The Proceedings of the 20th Annual Conference of Beijing Society of Theoretical and Applied Mechanics. Beijing: China Academic Journal Electronic Publishing House, 2014: 2. (in Chinese)
    [33]
    GAUL L, KÖGL M, WAGNER M. Boundary Element Methods for Engineers and Scientists: an Introductory Course With Advanced Topics[M]. New York: Springer-Verlag, 2003.
    [34]
    航空工业部科学技术委员会. 应力集中系数手册[M]. 北京: 高等教育出版社, 1990.

    Science and Technology Committee of the Ministry of Aeronautics Industry. Stress Concentration Factors Handbook[M]. Beijing: Higher Education Press, 1990. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (251) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return