Volume 45 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
ZHANG Jichao, ZHONG Xinyu, CHEN Yiming, SHI Yueqing, GUO Chengjie, LI Rui. Hamiltonian System-Based Analytical Solutions to Free Vibration Problems of Functionally Graded Rectangular Plates[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1157-1171. doi: 10.21656/1000-0887.440279
Citation: ZHANG Jichao, ZHONG Xinyu, CHEN Yiming, SHI Yueqing, GUO Chengjie, LI Rui. Hamiltonian System-Based Analytical Solutions to Free Vibration Problems of Functionally Graded Rectangular Plates[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1157-1171. doi: 10.21656/1000-0887.440279

Hamiltonian System-Based Analytical Solutions to Free Vibration Problems of Functionally Graded Rectangular Plates

doi: 10.21656/1000-0887.440279
  • Received Date: 2023-09-20
  • Rev Recd Date: 2023-11-05
  • Publish Date: 2024-09-01
  • Finding vibration mode functions satisfying both high-order partial differential governing equations and various non-Lévy-type boundary conditions is extremely challenging for the free vibration problems of functionally graded rectangular plates, making it difficult to analytically solve the problem with traditional methods. Herein, the newly developed Hamiltonian system-based symplectic superposition method was extended and successfully applied to analytical solutions to the free vibration problems of functionally graded rectangular plates. For the solution methodology, the original vibration problem was divided into sub-problems and the physical neutral plane was introduced to eliminate the stretching-bending coupling effect caused by the transversely non-uniform materials. The sub-problems were analytically solved with some mathematical techniques, i.e., the variable separation and the symplectic eigenvector expansion, which are not applicable in the traditional Lagrangian system. The final solution to an original vibration problem was obtained through the superposition of sub-problems. The symplectic superposition method has the advantage of not requiring the pre-defined solution forms, which overcomes the limitations of traditional semi-inverse methods and allows for obtaining analytical solutions to more complex problems. Comparison of the obtained solutions with the numerical solutions proves the accuracy of the presented method. On this basis, quantitative parameter analyses on the natural frequencies were conducted to reveal the effects of boundary conditions, material distributions and aspect ratios.
  • (Contributed by LI Rui, M.AMM Editorial Board)
  • loading
  • [1]
    KOIZUMI M. The concept of FGM[J]. Ceramic Transactions, 1993, 34: 3-10.
    [2]
    THAI H T, KIM S E. A review of theories for the modeling and analysis of functionally graded plates and shells[J]. Composite Structures, 2015, 128: 70-86. doi: 10.1016/j.compstruct.2015.03.010
    [3]
    PINGULKAR P, SURESHA B. Free vibration analysis of laminated composite plates using finite element method[J]. Polymers and Polymer Composites, 2016, 24(7): 529-538. doi: 10.1177/096739111602400712
    [4]
    VINYAS M. A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods[J]. Composites (Part B): Engineering, 2019, 158: 286-301. doi: 10.1016/j.compositesb.2018.09.086
    [5]
    CHEN M F, JIN G Y, YE T G, et al. An isogeometric finite element method for the in-plane vibration analysis of orthotropic quadrilateral plates with general boundary restraints[J]. International Journal of Mechanical Sciences, 2017, 133: 846-862. doi: 10.1016/j.ijmecsci.2017.09.052
    [6]
    李情, 陈莘莘. 基于重构边界光滑离散剪切间隙法的复合材料层合板自由振动分析[J]. 应用数学和力学, 2022, 43(10): 1123-1132. doi: 10.21656/1000-0887.430109

    LI Qing, CHEN Shenshen. Free vibration analysis of laminated composite plates based on the reconstructed edge-based smoothing DSG method[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1123-1132. (in Chinese) doi: 10.21656/1000-0887.430109
    [7]
    BESKOS D E. Boundary element methods in dynamic analysis[J]. Applied Mechanics Reviews, 1987, 40(1): 1-23. doi: 10.1115/1.3149529
    [8]
    NAJARZADEH L, MOVAHEDIAN B, AZHARI M. Free vibration and buckling analysis of thin plates subjected to high gradients stresses using the combination of finite strip and boundary element methods[J]. Thin-Walled Structures, 2018, 123: 36-47. doi: 10.1016/j.tws.2017.11.015
    [9]
    CHEN J T, CHEN I L, CHEN K H, et al. A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function[J]. Engineering Analysis With Boundary Elements, 2004, 28(5): 535-545. doi: 10.1016/S0955-7997(03)00106-1
    [10]
    WANG J F, YANG J P, LAI S K, et al. Stochastic meshless method for nonlinear vibration analysis of composite plate reinforced with carbon fibers[J]. Aerospace Science and Technology, 2020, 105: 105919. doi: 10.1016/j.ast.2020.105919
    [11]
    YOUNG D. Vibration of rectangular plates by the Ritz method[J]. Journal of Applied Mechanics: Transactions of the ASME, 1950, 17(4): 448-453. doi: 10.1115/1.4010175
    [12]
    LEISSA A W. The free vibration of rectangular plates[J]. Journal of Sound and Vibration, 1973, 31(3): 257-293. doi: 10.1016/S0022-460X(73)80371-2
    [13]
    QIN B, ZHONG R, WU Q Y, et al. A unified formulation for free vibration of laminated plate through Jacobi-Ritz method[J]. Thin-Walled Structures, 2019, 144: 106354. doi: 10.1016/j.tws.2019.106354
    [14]
    鲍四元, 邓子辰. 薄板弯曲自由振动问题的高精度近似解析解及改进研究[J]. 应用数学和力学, 2016, 37(11): 1169-1180. doi: 10.21656/1000-0887.370005

    BAO Siyuan, DENG Zichen. High-precision approximate analytical solutions for free bending vibrations of thin plates and an improvement[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1169-1180. (in Chinese) doi: 10.21656/1000-0887.370005
    [15]
    王永福, 漆文凯, 沈承, 等. 弹性约束边界条件下矩形蜂窝夹芯板的自由振动分析[J]. 应用数学和力学, 2019, 40(6): 583-594. doi: 10.21656/1000-0887.390348

    WANG Yongfu, QI Wenkai, SHEN Cheng, et al. Free vibration analysis of rectangular honeycomb-cored plates under elastically constrained boundary conditions[J]. Applied Mathematics and Mechanics, 2019, 40(6): 583-594. (in Chinese) doi: 10.21656/1000-0887.390348
    [16]
    WANG X, BERT C W. A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates[J]. Journal of Sound and Vibration, 1993, 162(3): 566-572. doi: 10.1006/jsvi.1993.1143
    [17]
    TORNABENE F, LIVERANI A, CALIGIANA G. FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: a 2-D GDQ solution for free vibrations[J]. International Journal of Mechanical Sciences, 2011, 53(6): 446-470. doi: 10.1016/j.ijmecsci.2011.03.007
    [18]
    WANG Y, FENG C, YANG J, et al. Nonlinear vibration of FG-GPLRC dielectric plate with active tuning using differential quadrature method[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113761. doi: 10.1016/j.cma.2021.113761
    [19]
    ZHANG C Y, JIN G Y, YE T G, et al. Harmonic response analysis of coupled plate structures using the dynamic stiffness method[J]. Thin-Walled Structures, 2018, 127: 402-415. doi: 10.1016/j.tws.2018.02.014
    [20]
    AKSU G, ALI R. Free vibration analysis of stiffened plates using finite-difference method[J]. Journal of Sound and Vibration, 1976, 48(1): 15-25. doi: 10.1016/0022-460X(76)90367-9
    [21]
    QU W, HE H. A GFDM with supplementary nodes for thin elastic plate bending analysis under dynamic loading[J]. Applied Mathematics Letters, 2022, 124: 107664. doi: 10.1016/j.aml.2021.107664
    [22]
    HIEN T D, NOH H C. Stochastic isogeometric analysis of free vibration of functionally graded plates considering material randomness[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 845-863. doi: 10.1016/j.cma.2017.02.007
    [23]
    KUMAR S, RANJAN V, JANA P. Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method[J]. Composite Structures, 2018, 197: 39-53. doi: 10.1016/j.compstruct.2018.04.085
    [24]
    YIN S H, HALE J S, YU T T, et al. Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates[J]. Composite Structures, 2014, 118: 121-138. doi: 10.1016/j.compstruct.2014.07.028
    [25]
    THANG P T, LEE J. Free vibration characteristics of sigmoid-functionally graded plates reinforced by longitudinal and transversal stiffeners[J]. Ocean Engineering, 2018, 148: 53-61. doi: 10.1016/j.oceaneng.2017.11.023
    [26]
    JHA D K, KANT T, SINGH R K. Free vibration response of functionally graded thick plates with shear and normal deformations effects[J]. Composite Structures, 2013, 96: 799-823. doi: 10.1016/j.compstruct.2012.09.034
    [27]
    KIM J, ZUR K K, REDDY J N. Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates[J]. Composite Structures, 2019, 209: 879-888. doi: 10.1016/j.compstruct.2018.11.023
    [28]
    高祥雨, 王壮壮, 马连生. 功能梯度板弯曲和自由振动分析的简单精化板理论[J]. 固体力学学报, 2023, 44(1): 96-108.

    GAO Xiangyu, WANG Zhuangzhuang, MA Liansheng. A simple refined plate theory for bending and free vibration analysis of functionally graded plate[J]. Chinese Journal of Solid Mechanics, 2023, 44(1): 96-108. (in Chinese)
    [29]
    BAFERANI A H, SAIDI A R, JOMEHZADEH E. An exact solution for free vibration of thin functionally graded rectangular plates[J]. Proceedings of the Institution of Mechanical Engineers (Part C): Journal of Mechanical Engineering Science, 2011, 225(3): 526-536. doi: 10.1243/09544062JMES2171
    [30]
    FARSANGI M A A, SAIDI A R. Lévy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers[J]. Smart Materials and Structures, 2012, 21(9): 094017. doi: 10.1088/0964-1726/21/9/094017
    [31]
    DEMIRHAN P A, TASKIN V. Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach[J]. Composites (Part B): Engineering, 2019, 160: 661-676. doi: 10.1016/j.compositesb.2018.12.020
    [32]
    HU Z, YANG Y, ZHOU C, et al. On the symplectic superposition method for new analytic free vibration solutions of side-cracked rectangular thin plates[J]. Journal of Sound and Vibration, 2020, 489: 115695. doi: 10.1016/j.jsv.2020.115695
    [33]
    HU Z, ZHOU C, NI Z, et al. New symplectic analytic solutions for buckling of CNT reinforced composite rectangular plates[J]. Composite Structures, 2023, 303: 116361. doi: 10.1016/j.compstruct.2022.116361
    [34]
    XU D, XIONG S, MENG F, et al. An analytic model of transient heat conduction for bi-layered flexible electronic heaters by symplectic superposition[J]. Micromachines, 2022, 13(10): 1627. doi: 10.3390/mi13101627
    [35]
    YANG Y, AN D, XU H, et al. On the symplectic superposition method for analytic free vibration solutions of right triangular plates[J]. Archive of Applied Mechanics, 2021, 91(1): 187-203. doi: 10.1007/s00419-020-01763-7
    [36]
    杨雨诗, 安东琦, 倪卓凡, 等. 四角点支承四边自由矩形薄板屈曲问题的新解析解[J]. 计算力学学报, 2020, 37(5): 517-523.

    YANG Yushi, AN Dongqi, NI Zhuofan, et al. A new analytic solution to the buckling problem of rectangular thin plates with four corners point-supported and four edges free[J]. Chinese Journal of Computional Mechaincs, 2020, 37(5): 517-523. (in Chinese)
    [37]
    李锐, 田宇, 郑新然, 等. 求解弹性地基上自由矩形中厚板弯曲问题的辛-叠加方法[J]. 应用数学和力学, 2018, 39(8): 875-891. doi: 10.21656/1000-0887.390186

    LI Rui, TIAN Yu, ZHENG Xinran, et al. A symplectic superposition method for bending problems of free-edge rectangular thick plates resting on elastic foundations[J]. Applied Mathematics and Mechanics, 2018, 39(8): 875-891. (in Chinese) doi: 10.21656/1000-0887.390186
    [38]
    ZHANG D, ZHOU Y. A theoretical analysis of FGM thin plates based on physical neutral surface[J]. Computational Materials Science, 2008, 44(2): 716-720. doi: 10.1016/j.commatsci.2008.05.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (162) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return