Volume 45 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
WANG Chengyan, LIU Guanting. The Antiplane Problem of a Lip-Shaped Orifice With 4 Edge Cracks in 1D Hexagonal Piezoelectric Quasicrystal[J]. Applied Mathematics and Mechanics, 2024, 45(7): 886-897. doi: 10.21656/1000-0887.440346
Citation: WANG Chengyan, LIU Guanting. The Antiplane Problem of a Lip-Shaped Orifice With 4 Edge Cracks in 1D Hexagonal Piezoelectric Quasicrystal[J]. Applied Mathematics and Mechanics, 2024, 45(7): 886-897. doi: 10.21656/1000-0887.440346

The Antiplane Problem of a Lip-Shaped Orifice With 4 Edge Cracks in 1D Hexagonal Piezoelectric Quasicrystal

doi: 10.21656/1000-0887.440346
  • Received Date: 2023-12-05
  • Rev Recd Date: 2024-01-09
  • Publish Date: 2024-07-01
  • Through construction of the conformal mapping and with Stroh's formula, the antiplane problem of 4 secondary cracks at the lip-shaped orifice of 1D hexagonal piezoelectric quasicrystal, was studied. The effects of geometrical parameters and external loads on stress intensity factors and energy release rates were analyzed with numerical examples. The results show that, the crack length growth on either corner side of the orifice or the orifice length increase can promote the crack propagation. The crack length growth on the upper and lower sides has no obvious effect on the crack propagation on the left and right sides. The higher the orifice height is, the more significant the inhibition effect on the crack growth on both corner sides will be; the increase of the external mechanical load and electric load can promote the crack propagation. Some special defects can be derived from the degradation of the relevant parameters of the defects, such as the secondary 2 cracks in the orifice, the lip-shaped crack, and the Griffith crack, etc.
  • loading
  • [1]
    ROCHAL S B. Second-order terms of the phonon-phason dynamic matrix of an icosahedral quasicrystal: diffuse intensity and the profile shape around the Bragg peaks[J]. Physical Review B, 2001, 64 (14): 144204. doi: 10.1103/PhysRevB.64.144204
    [2]
    ROCHAL SB, LORMAN V L. Inhomogeneous, disordered, and partially ordered systems-minimal model of the phonon-phason dynamics in icosahedral quasicrystals and its application to the problem of internal friction in the i-AlPdMn alloy[J]. Physical Review B, 2002, 66 (14): 144204. doi: 10.1103/PhysRevB.66.144204
    [3]
    MUSKHELISHVILI N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Leyden: Noordhoff International, 1953.
    [4]
    FAN T Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Berlin: Springer, 2011.
    [5]
    郭俊宏, 刘官厅. 一维六方准晶中具有不对称裂纹的圆形孔口问题的解析解[J]. 应用数学学报, 2007, 30 (6): 1066-1075. doi: 10.3321/j.issn:0254-3079.2007.06.012

    GUO Junhong, LIU Guanting. Analytic solutions of the one-dimensional hexagonal quasicrystals about problem of a circular hole with asymmetry cracks[J]. Acta Mathematicae Applicatae Sinica, 2007, 30 (6): 1066-1075. (in Chinese) doi: 10.3321/j.issn:0254-3079.2007.06.012
    [6]
    郭俊宏, 刘官厅. 一维六方准晶中带双裂纹的椭圆孔口问题的解析解[J]. 应用数学和力学, 2008, 29 (4): 439-446. doi: 10.3879/j.issn.1000-0887.2008.04.006

    GUO Junhong, LIU Guanting. Analytic solutions to problem of elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Mechanics, 2008, 29 (4): 439-446. (in Chinese) doi: 10.3879/j.issn.1000-0887.2008.04.006
    [7]
    LI L H, FAN T Y. Exact solutions of two semi-infinite collinear cracks in a strip of one dimensional hexagonal quasicrystal[J]. Applied Mathematics and Computation, 2008, 196 (1): 1-5. doi: 10.1016/j.amc.2007.05.028
    [8]
    SHI W. Collinear periodic cracks and/or rigid line inclusions of antiplane sliding mode in one-dimensional hexagonal quasicrystal[J]. Applied Mathematics and Computation, 2009, 215 (3): 1062-1067. doi: 10.1016/j.amc.2009.06.055
    [9]
    ZHOU Y B, LI X F. Two collinear mode-Ⅲ cracks in one-dimensional hexagonal piezoelectric quasicrystal strip[J]. Engineering Fracture Mechanics, 2018, 189 (15): 133-147.
    [10]
    AlTAY G, DÖKMECI M C. On the fundamental equations of piezoelasticity of quasicrystal media[J]. International Journal of Solids and Structures, 2012, 49 (23/24): 3255-3262.
    [11]
    LI X Y, LI P D, WU T H, et al. Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect[J]. Physics Letters A, 2014, 378 (10): 826-834. doi: 10.1016/j.physleta.2014.01.016
    [12]
    张也, 刘官厅, 周彦斌. 一维六方压电准晶体中Ⅲ型偏折裂纹的断裂问题[J]. 内蒙古师范大学学报(自然科学汉文版), 2023, 52 (5): 521-529. doi: 10.3969/j.issn.1001-8735.2023.05.012

    ZHANG Ye, LIU Guanting, ZHOU Yanbin. Fracture problem of type Ⅲ deflection crack in one-dimensional hexagonal piezoelectric quasicrystals[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2023, 52 (5): 521-529. (in Chinese) doi: 10.3969/j.issn.1001-8735.2023.05.012
    [13]
    匡震邦. 只有尖点的平面曲边多角形缺陷的应力分析[J]. 力学学报, 1979, 15 (2): 118-128. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB197902002.htm

    KUANG Zhenbang. Stress analysis of planar curved polygonal defects with only cusp points[J]. Chinese Journal of Theoretical and Applied Mechanics, 1979, 15 (2): 118-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB197902002.htm
    [14]
    郭怀民, 赵国忠, 刘官厅, 等. 含唇口次生两不对称裂纹的一维六方压电准晶体的反平面剪切问题[J]. 固体力学学报, 2024, 45 (1): 123-134. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202401010.htm

    GUO Huaimin, ZHAO Guozhong, LIU Guanting, et al. Inverse plane shear problem of one-dimensional hexagonal piezoelectric quasicrystals with secondary asymmetric cracks at the lip[J]. Chinese Journal of Solid Mechanics, 2024, 45 (1): 123-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202401010.htm
    [15]
    于静, 郭俊宏, 邢永明. 压电复合材料中Ⅲ型唇形裂纹问题的解析解[J]. 复合材料学报, 2014, 31 (5): 1357-1363. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201405034.htm

    YU Jing, GUO Junhong, XING Yongming. Analytical solution of type Ⅲ lip crack in piezoelectric composites[J]. Acta Materiae Compositae Sinica, 2014, 31 (5): 1357-1363. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201405034.htm
    [16]
    范天佑. 断裂理论基础[M]. 北京: 科学出版社, 2003.

    FAN Tianyou. Foundation of Fracture Mechanics[M]. Beijing: Science Press, 2003. (in Chinese)
    [17]
    YU J, GUO J H, PAN E, et al. General solutions of plane problem in one-dimensional quasicrystal piezoelectric materials and its application on fracture mechanics[J]. Applied Mathematics and Mechanics(English Edition), 2015, 36 (6): 793-814. doi: 10.1007/s10483-015-1949-6
    [18]
    樊世旺, 郭俊宏. 一维六方压电准晶三角形孔边裂纹反平面问题[J]. 应用力学学报, 2016, 33 (3): 421-426. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201603010.htm

    FAN Shiwang, GUO Junhong. Inverse plane problem of one-dimensional hexagonal piezoelectric quasicrystal triangle hole edge crack[J]. Chinese Journal of Applied Mechanics, 2016, 33 (3): 421-426. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201603010.htm
    [19]
    WANG Y J, GAO C F. The mode Ⅲ cracks originating from the edge of a circular hole in a piezoelectric solid[J]. International Journal of Solids and Structures, 2008, 45 (16): 4590-4599.
    [20]
    GUO J H, YU J, SI R. A semi-inverse method of a Griffith crack in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Computation, 2013, 219 (14): 7445-7449.
    [21]
    LI L H, LIU G T. Interaction of a dislocation with an elliptical hole in icosahedral quasicrystals[J]. Philosophical Magazine Letters, 2013, 93 (3): 142-151.
    [22]
    刘鑫, 郭俊宏, 于静. 磁电弹性材料中唇形裂纹反平面问题[J]. 内蒙古大学学报(自然科学版), 2016, 47 (1): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGX202005003.htm

    LIU Xin, GUO Junhong, YU Jing. Antiplane problem of lip cracks in magnetoelectroelastic materials[J]. Journal of Inner Mongolia University (Natural Science Edition), 2016, 47 (1): 37-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMGX202005003.htm
    [23]
    GUO J H, LU Z X, HAN H T, et al. Exact solutions for anti-plane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material[J]. International Journal of Solids and Structures, 2009, 46 (21): 3799-3809.
    [24]
    高媛媛, 刘官厅. 一维正交准晶中具有四条裂纹的椭圆孔口问题的解析解[J]. 应用数学和力学, 2019, 40 (2): 210-222. doi: 10.21656/1000-0887.390032

    GAO Yuanyuan, LIU Guanting. Analytical solution of elliptic orifice problem with four cracks in one-dimensional orthogonal quasicrystals[J]. Applied Mathematics and Mechanics, 2019, 40 (2): 210-222. (in Chinese) doi: 10.21656/1000-0887.390032
    [25]
    YANG D S, LIU G T. Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals[J]. Chinese Physics B, 2020, 29 (10): 104601.
    [26]
    GUO J H, LU Z X. Exact solution of four cracks originating from an elliptical hole in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Computation, 2011, 217 (22): 9397-9403.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (132) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return