Volume 45 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
YAO Hao, XIA Guiran, LIU Zejia, ZHOU Licheng. A Defect Identification Method for Bonding Layers of Adhesive Steel Members Based on Machine Learning[J]. Applied Mathematics and Mechanics, 2024, 45(4): 429-442. doi: 10.21656/1000-0887.440365
Citation: YAO Hao, XIA Guiran, LIU Zejia, ZHOU Licheng. A Defect Identification Method for Bonding Layers of Adhesive Steel Members Based on Machine Learning[J]. Applied Mathematics and Mechanics, 2024, 45(4): 429-442. doi: 10.21656/1000-0887.440365

A Defect Identification Method for Bonding Layers of Adhesive Steel Members Based on Machine Learning

doi: 10.21656/1000-0887.440365
  • Received Date: 2023-12-25
  • Rev Recd Date: 2024-01-24
  • Publish Date: 2024-04-01
  • The effects of bonding layer defects on ultrasonic detection signals of bonded steel reinforced structures were deeply studied and a new method for the bonding layer defect identification based on machine learning was proposed. Firstly, based on the direct contact pulse-echo reflection method, the finite element simulation of the viscous steel member was carried out, and the propagation law of ultrasonic waves in the viscous steel member was expounded. Secondly, the characteristics of local ultrasonic echo signals and related signals were analyzed, and the effects of different defect variables on ultrasonic echo signals were discussed. Finally, the ultrasonic time-history response data set of the adhesive steel member was established, and the classification and recognition performances of different machine learning models for the size and location of defects were compared, and the defect identification method for the adhesive layer of the bonded steel member was built. The results show that, the local ultrasonic echo signal and its characteristics change regularly with the defect size and location, which can help preliminarily distinguish the defect information. Meanwhile, the proposed RF model-based defect identification method can effectively identify the defects of the adhesive layer in the bonded steel member, and has a broad engineering application prospect.
  • (Contributed by ZHOU Licheng, M.AMM Youth Editorial Board)
  • loading
  • [1]
    阿林香. 桥梁钢T梁梁底贴钢板施工质量控制[J]. 中国高新科技, 2021(2): 40-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKE202102016.htm

    A Linxiang. Construction quality control of steel plate attached to the bottom of bridge steel T-beam[J]. China High and New Technology, 2021(2): 40-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKE202102016.htm
    [2]
    缪飞, 王庆曌. 钢筋混凝土结构粘钢加固质量检测[J]. 中华民居, 2014(5): 160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHMJ201405140.htm

    MIAO Fei, WANG Qingzhao. Quality inspection of reinforced concrete structure bonded to steel reinforcement[J]. China Homes, 2014(5): 160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHMJ201405140.htm
    [3]
    佟阳. 粘贴钢板补强钢筋混凝土梁抗剪性能试验研究[J]. 公路交通科技(应用技术版), 2011, 7(5): 4-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201105003.htm

    TONG Yang. Experimental study on shear behavior of reinforced concrete beams reinforced by pasted steel plates[J]. Journal of Highway and Transportation Research and Development, 2011, 7(5): 4-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201105003.htm
    [4]
    林学春. 钢筋混凝土桥梁粘钢加固试验研究[J]. 中外公路, 2013, 33(1): 167-172. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201301043.htm

    LIN Xuechun. Experimental study on reinforced concrete bridge reinforced with steel[J]. Journal of China & Foreign Highway, 2013, 33(1): 167-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201301043.htm
    [5]
    刘茂钊, 杨博, 杨英武. 基于涡流热激励的粘钢加固混凝土结构粘结层缺陷热像识别试验研究[J]. 中国测试, 2023, 49(5): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202305008.htm

    LIU Maozhao, YANG Bo, YANG Yingwu. Experimental study on thermal image identification of bonded layer defects in reinforced concrete structures based on eddy current thermal excitation[J]. China Measurement & Test, 2023, 49(5): 52-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202305008.htm
    [6]
    杨英武, 张欣, 杨小青, 等. 红外热像法识别混凝土结构粘钢加固缺陷的试验研究[J]. 低温建筑技术, 2018, 40(5): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201805010.htm

    YANG Yingwu, ZHANG Xin, YANG Xiaoqing, et al. Experimental study on identification of reinforced defects of concrete structures by using infrared thermography[J]. Low Temperature Architecture Technology, 2018, 40(5): 21-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201805010.htm
    [7]
    YAN D, NEILD S A, DRINKWATER B W. Modelling and measurement of the nonlinear behaviour of kissing bonds in adhesive joints[J]. NDT & E International, 2012, 47: 18-25.
    [8]
    ADAMS R D, DRINKWATER B W. Nondestructive testing of adhesively-bonded joints[J]. NDT & E International, 1997, 30(2): 93-98.
    [9]
    TITOV S A, MAEV R G, BOGACHENKOV A N. Pulse-echo NDT of adhesively bonded joints in automotive assemblies[J]. Ultrasonics, 2008, 48(6/7): 537-546.
    [10]
    孙朝明, 汤光平, 李建文. 脉冲反射法检测粘接缺陷的有限元模拟[J]. 无损检测, 2014. 36(7): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201407002.htm

    SUN Chaoming, TANG Guangping, LI Jianwen. Finite element simulation of detection of bonding defects by pulse reflection method[J]. Nondestructive Testing, 2014, 36(7): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201407002.htm
    [11]
    SUN G, ZHAO L, DONG M, et al. Non-contact characterization of debonding in lead-alloy steel bonding structure with laser ultrasound[J]. Optik, 2018, 164: 734-744. doi: 10.1016/j.ijleo.2018.03.075
    [12]
    陈军, 乔丹, 崔哲, 等. 黏接结构弱黏接缺陷的非线性超声评价[J]. 无损检测, 2019, 41(9): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201909016.htm

    LI Jun, QIAO Dan, CUI Zhe, et al. Nonlinear ultrasonic evaluation of weak bonding defects in bonding structure[J]. Nondestructive Testing, 2019, 41(9): 60-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201909016.htm
    [13]
    郝威, 李明, 徐莹, 等. 复合材料蜂窝夹芯缺陷超声检测模拟研究[J]. 机械科学与技术, 2023, 42(8): 1362-1365. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202308024.htm

    HAO Wei, LI Ming, XU Ying, et al. Simulation study on ultrasonic detection of defects in honeycomb sandwich of composite materials[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 42(8): 1362-1365. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202308024.htm
    [14]
    李伟, 李建增, 周海林, 等. 多层复合材料超声检测的数值模拟[J]. 系统仿真技术, 2012, 8(1): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFJ201201009.htm

    LI Wei, LI Jianzeng, ZHOU Hailin, et al. Numerical simulation of ultrasonic testing of multilayer composites[J]. System Simulation Technology, 2012, 8(1): 32-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFJ201201009.htm
    [15]
    WOJTCZAK E, RUCKA M. Wave frequency effects on damage imaging in adhesive joints using lamb waves and RMS[J]. Materials, 2019, 12(11): 1842. doi: 10.3390/ma12111842
    [16]
    WANG H, FAN Z, CHEN X, et al. Automated classification of pipeline defects from ultrasonic phased array total focusing method imaging[J]. Energies, 2022, 15(21): 8272. doi: 10.3390/en15218272
    [17]
    LIU Q, JIANG A, FANG D, et al. Intelligent recognition of defects in vermicular graphite cast iron engine cylinder head by ultrasonic testing[J]. Journal of Physics: Conference Series, 2021, 1894(1): 12034. doi: 10.1088/1742-6596/1894/1/012034
    [18]
    LV G, GUO S, CHEN D, et al. Laser ultrasonics and machine learning for automatic defect detection in metallic components[J]. NDT & E International, 2023, 133: 102752.
    [19]
    SAMBATH S, NAGARAJ P, SELVAKUMAR N. Automatic defect classification in ultrasonic NDT using artificial intelligence[J]. Journal of Nondestructive Evaluation, 2011, 30(1): 20-28. doi: 10.1007/s10921-010-0086-0
    [20]
    徐猛, 李宇涛, 徐彦霖, 等. 粘接层厚度对粘接质量超声检测的影响分析[J]. 兵器材料科学与工程, 2008, 31(3): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG200803019.htm

    XU Meng, LI Yutao, XU Yanlin, et al. Analysis of influence of bonding layer thickness on ultrasonic detection of bonding quality[J]. Ordnance Material Science and Engineering, 2008, 31(3): 62-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG200803019.htm
    [21]
    马晓磊. 基于COMSOL仿真的材料缺陷超声检测模式识别[D]. 南昌: 南昌航空大学, 2019.

    MA Xiaolei. Pattern recognition of ultrasonic testing of material defects based on COMSOL simulation[D]. Nanchang: Nanchang Hangkong University, 2019. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (247) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return