Volume 45 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
YANG Shasha, PENG Cong, MENG Han, SHEN Cheng. Study on Sound Insulation Characteristics of Thin Plate Acoustic Metamaterials With Flexoelectric Effects[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1070-1081. doi: 10.21656/1000-0887.450115
Citation: YANG Shasha, PENG Cong, MENG Han, SHEN Cheng. Study on Sound Insulation Characteristics of Thin Plate Acoustic Metamaterials With Flexoelectric Effects[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1070-1081. doi: 10.21656/1000-0887.450115

Study on Sound Insulation Characteristics of Thin Plate Acoustic Metamaterials With Flexoelectric Effects

doi: 10.21656/1000-0887.450115
  • Received Date: 2024-04-25
  • Rev Recd Date: 2024-06-05
  • Publish Date: 2024-08-01
  • When the structure size is reduced to the micro-and nano-scale, a new mechanoelectric coupling effect, the flexoelectric effect, cannot be ignored. The governing equations and boundary conditions for the sound insulation problem of thin plate acoustic metamaterial structure with the flexoelectric effects were derived by means of the variational principle. The sound insulation curves of thin plate mass blocks were predicted based on the Kirchhoff theory. The effects of flexural effects, geometric sizes and mass densities on the sound insulation performances of the structure were systematically discussed. The results show that, for the micro-and nano-scale structure sizes, the flexoelectric effect significantly increases the sound insulation valley values and peak frequencies of the sound insulation curves, so it is necessary to consider the flexoelectric effects. This work provides a theoretical basis for the research of noise control in MEMS.
  • (Contributed by MENG Han, M.AMM Youth Editorial Board)
  • loading
  • [1]
    田源, 葛浩, 卢明辉, 等. 声学超构材料及其物理效应的研究进展[J]. 物理学报, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850

    TIAN Yuan, GE Hao, LU Minghui, et al. Research advances in acoustic metamaterials[J]. Acta Physica Sinica, 2019, 68(19): 194301. (in Chinese) doi: 10.7498/aps.68.20190850
    [2]
    MA G, YANG M, YANG Z, et al. Low-frequency narrow-band acoustic filter with large orifice[J]. Applied Physics Letters, 2013, 103(1): 011903. doi: 10.1063/1.4812974
    [3]
    PARK J J, KWAK J H, SONG K. Ultraslow medium with an acoustic membrane-like undamped dynamic vibration absorber for low-frequency isolation[J]. Extreme Mechanics Letters, 2021, 43: 101203. doi: 10.1016/j.eml.2021.101203
    [4]
    YAO S, ZHOU X, HU G. Investigation of the negative-mass behaviors occurring below a cut-off frequency[J]. New Journal of Physics, 2010, 12(10): 103025. doi: 10.1088/1367-2630/12/10/103025
    [5]
    MEI J, MA G, YANG M, et al. Dark acoustic metamaterials as super absorbers for low-frequency soun[J]. Nature Communications, 2012, 3: 756. doi: 10.1038/ncomms1758
    [6]
    KALAEE M, MIRHOSSEINI M, DIETERLE P B, et al. Quantum electromechanics of a hypersonic crystal[J]. Nature Nanotechnology, 2019, 14(4): 334-339. doi: 10.1038/s41565-019-0377-2
    [7]
    CUENOT S, FRÉTIGNY C, DEMOUSTIER-CHAMPAGNE S, et al. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy[J]. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(16): 165410. doi: 10.1103/PhysRevB.69.165410
    [8]
    WANG Z L, SONG J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246. doi: 10.1126/science.1124005
    [9]
    WANG X, ZHOU J, SONG J, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire[J]. Nano Letters, 2006, 6(12): 2768-2772. doi: 10.1021/nl061802g
    [10]
    JIANG X, HUANG W, ZHANG S. Flexoelectric nano-generator: materials, structures and devices[J]. Nano Energy, 2013, 2(6): 1079. doi: 10.1016/j.nanoen.2013.09.001
    [11]
    ZHANG Z, JIANG L. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity[J]. Journal of Applied Physics, 2014, 116: 134308. doi: 10.1063/1.4897367
    [12]
    SHEN S, HU S. A theory of flexoelectricity with surface effect for elastic dielectrics[J]. Journal of the Mechanics and Physics Solids, 2010, 58(5): 665-677. doi: 10.1016/j.jmps.2010.03.001
    [13]
    王平, 黄庆安, 于虹. 纳机电系统阻尼及噪声研究进展[J]. 电子器件, 2004, 27(3): 527-532. doi: 10.3969/j.issn.1005-9490.2004.03.039

    WANG Ping, HUANG Qing'an, YU Hong. Research and ptogress of damping and noise in NEMS[J]. Chinese Journal of Electron Devices, 2004, 27(3): 527-532. (in Chinese) doi: 10.3969/j.issn.1005-9490.2004.03.039
    [14]
    任树伟, 辛锋先, 卢天健. 考虑尺度效应的微平板声振耦合特性研究[J]. 中国科学: 技术科学, 2014, 44(2): 201-208.

    REN Shuwei, XIN Fengxian, LU Tianjian. Vibroacoustic characteristics of micro-plates considering scale effect[J]. Scientia Sinica: Technologica, 2014, 44(2): 201-208. (in Chinese)
    [15]
    原庆丹, 郭俊宏. 一维纳米准晶层合梁的非局部振动、屈曲与弯曲研究[J]. 应用数学和力学, 2024, 45(2): 208-219.

    YUAN Qingdan, GUO Junhong. Nonlocal vibration, buckling and bending of 1D layered quasicrystal nanobeams[J]. Applied Mathematics and Mechanics, 2024, 45(2): 208-219. (in Chinese)
    [16]
    GHORBANPOUR A A, SOLTAN A A H, HAGHPARAST E. Flexoelectric and surface effects on vibration frequencies of annular nanoplate[J]. Indian Journal of Physics, 2021, 95(10): 2063-2083. doi: 10.1007/s12648-020-01854-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (189) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return