Citation: | ZHANG Zhiyang, ZHAO Zhenyu, REN Jianwei, GAO Huiyao. Study on Impact Resistance of Connection Joints for Honeycomb Sandwich Structures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1024-1036. doi: 10.21656/1000-0887.450131 |
[1] |
PAIK J K, THAYAMBALLI A K, KIM G S. The strength characteristics of aluminum honeycomb sandwich panels[J]. Thin-Walled Structures, 1999, 35(3): 205-231. doi: 10.1016/S0263-8231(99)00026-9
|
[2] |
SUN G, CHEN D, HUO X, et al. Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels[J]. Composite Structures, 2018, 184: 110-124. doi: 10.1016/j.compstruct.2017.09.025
|
[3] |
REDDY B G V, SHARMA K V, REDDY T Y. Deformation and impact energy absorption of cellular sandwich panels[J]. Materials & Design, 2014, 61: 217-227.
|
[4] |
GIBSON L, ASHBY M F. Cellular Solids Structure and Properties[M]. Cambridge: Cambridge University Press, 1999.
|
[5] |
ADHIKARI S. The in-plane mechanical properties of highly compressible and stretchable 2D lattices[J]. Composite Structures, 2021, 272: 114167. doi: 10.1016/j.compstruct.2021.114167
|
[6] |
李金矿, 万文玉, 刘闯. 形状记忆合金蜂窝结构抗冲击性能研究[J]. 应用数学和力学, 2024, 45(1): 34-44.
LI Jinkuang, WAN Wenyu, LIU Chuang. Study on impact resistance of shape memory alloy honeycomb structures[J]. Applied Mathematics and Mechanics, 2024, 45(1): 34-44. (in Chinese)
|
[7] |
DAFANG W, LIMING Z, BING P, et al. Thermal protection performance of metallic honeycomb core panel structures in non-steady thermal environments[J]. Experimental Heat Transfer, 2016, 29(1): 53-77. doi: 10.1080/08916152.2014.940433
|
[8] |
HUANG W C, NG C F. Sound insulation improvement using honeycomb sandwich panels[J]. Applied Acoustics, 1998, 53(1/3): 163-177.
|
[9] |
NG C F, HUI C K. Low frequency sound insulation using stiffness control with honeycomb panels[J]. Applied Acoustics, 2008, 69(4): 293-301. doi: 10.1016/j.apacoust.2006.12.001
|
[10] |
PALOMBA G, EPASTO G, CRUPI V, et al. Single and double-layer honeycomb sandwich panels under impact loading[J]. International Journal of Impact Engineering, 2018, 121: 77-90. doi: 10.1016/j.ijimpeng.2018.07.013
|
[11] |
XIE S, JING K, ZHOU H, et al. Mechanical properties of Nomex honeycomb sandwich panels under dynamic impact[J]. Composite Structures, 2020, 235: 111814. doi: 10.1016/j.compstruct.2019.111814
|
[12] |
ZHANG D, FEI Q, ZHANG P. Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor[J]. Composite Structures, 2017, 168: 633-645. doi: 10.1016/j.compstruct.2017.02.053
|
[13] |
GABRIELE I, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs[J]. Composite Structures, 2018, 183: 242-261. doi: 10.1016/j.compstruct.2017.03.018
|
[14] |
SAWANT R, PATEL M, PATEL S. Numerical analysis of honeycomb sandwich panels under blast load[J]. Materials Today: Proceedings, 2023, 87: 67-73. doi: 10.1016/j.matpr.2022.09.547
|
[15] |
YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact: an experimental study[J]. International Journal of Impact Engineering, 2015, 75: 100-109. doi: 10.1016/j.ijimpeng.2014.07.019
|
[16] |
WEN H M, REDDY T Y, REID S R, et al. Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading[J]. Key Engineering Materials, 1998, 143: 501-552.
|
[17] |
MENNA C, ZINNO A, ASPRONE D, et al. Numerical assessment of the impact behavior of honeycomb sandwich structures[J]. Composite Structures, 2013, 106: 326-339. doi: 10.1016/j.compstruct.2013.06.010
|
[18] |
EBRAHIMI H, GHOSH R, MAHDI E, et al. Honeycomb sandwich panels subjected to combined shock and projectile impact[J]. International Journal of Impact Engineering, 2016, 95: 1-11. doi: 10.1016/j.ijimpeng.2016.04.009
|
[19] |
SUN G, CHEN D, WANG H, et al. High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations[J]. International Journal of Impact Engineering, 2018, 122: 119-136. doi: 10.1016/j.ijimpeng.2018.08.007
|
[20] |
RATHBUN H J, RADFORD D D, XUE Z, et al. Performance of metallic honeycomb-core sandwich beams under shock loading[J]. International Journal of Solids and Structures, 2006, 43(6): 1746-1763. doi: 10.1016/j.ijsolstr.2005.06.079
|
[21] |
DHARMASENA K P, WADLEY H N G, XUE Z, et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading[J]. International Journal of Impact Engineering, 2008, 35(9): 1063-1074. doi: 10.1016/j.ijimpeng.2007.06.008
|
[22] |
CASTANIÉ B, BOUVET C, GINOT M. Review of composite sandwich structure in aeronautic applications[J]. Composites (Part C): Open Access, 2020, 1: 100004. doi: 10.1016/j.jcomc.2020.100004
|
[23] |
张杜江, 赵振宇, 褚庆国, 等. 浅埋爆炸下考虑乘员安全的防雷底板设计理论模型[J/OL]. 应用力学学报, 2024[2024-06-09].
ZHANG Dujiang, ZHAO Zhenyu, CHU Qingguo, et al. Theoretical model of armored vehicle bottom plate subjected to detonation of shallow-buried explosives, with occupant safety considered[J/OL]. Chinese Journal of Applied Mechanics, 2024[2024-06-09].
|
[24] |
CRUPI V, EPASTO G, GUGLIELMINO E. Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading[J]. International Journal of Impact Engineering, 2012, 43: 6-15. doi: 10.1016/j.ijimpeng.2011.12.002
|
[25] |
ELGEWELY E. 3D reconstruction of furniture fragments from the ancient town of karanis[J]. Studies in Digital Heritage, 2017, 1(2): 409-427. doi: 10.14434/sdh.v1i2.23340
|
[26] |
KOZAK J. Selected problems on application of steel sandwich panels to marine structures[J]. Polish Maritime Research, 2009, 16(4): 9-15.
|
[27] |
LIU Z, MAJUMDAR P K, COUSINS T E, et al. Development and evaluation of an adhesively bonded panel-to-panel joint for a FRP bridge deck system[J]. Journal of Composites for Construction, 2008, 12(2): 224-233.
|
[28] |
ZHOU A, KELLER T. Joining techniques for fiber reinforced polymer composite bridge deck systems[J]. Composite Structures, 2005, 69(3): 336-345.
|
[29] |
BANHART J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46(6): 559-632.
|
[30] |
SCHVLER P, FISCHER S F, BVHRIG-POLACZEK A, et al. Deformation and failure behaviour of open cell Al foams under quasistatic and impact loading[J]. Materials Science and Engineering: A, 2013, 587: 250-261.
|
[31] |
张杜江, 赵振宇, 贺良, 等. 基于Johnson-Cook本构模型的高强度装甲钢动态力学性能参数标定及验证[J]. 兵工学报, 2022, 43(8): 1966-1976.
ZHANG Dujiang, ZHAO Zhenyu, HE Liang, et al. Calibration and verification of dynamic mechanical properties of high-strength armored steel based on Johnson-Cook constitutive model[J]. Acta Armamentarii, 2022, 43(8): 1966-1976. (in Chinese)
|
[32] |
NAHSHON K, PONTIN M, EVANS A, et al. Dynamic shear rupture of steel plates[J]. Journal of Mechanics of Materials and Structures, 2007, 2(10): 2049-2066.
|
[33] |
郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系[J]. 爆炸与冲击, 2018, 38(4): 804-810.
GUO Zitao, GAO Bin, GUO Zhao, et al. Dynamic constitutive relation based on J-C model of Q235 steel[J]. Explosion and Shock Waves, 2018, 38(4): 804-810. (in Chinese)
|