GUO Zhi-wei, BAI Guang-chen. Classification Using Least Squares Support Vector Machine for Reliability Analysis[J]. Applied Mathematics and Mechanics, 2009, 30(7): 799-810. doi: 10.3879/j.issn.1000-0887.2009.07.005
Citation: GUO Zhi-wei, BAI Guang-chen. Classification Using Least Squares Support Vector Machine for Reliability Analysis[J]. Applied Mathematics and Mechanics, 2009, 30(7): 799-810. doi: 10.3879/j.issn.1000-0887.2009.07.005

Classification Using Least Squares Support Vector Machine for Reliability Analysis

doi: 10.3879/j.issn.1000-0887.2009.07.005
  • Received Date: 2008-05-19
  • Rev Recd Date: 2009-05-18
  • Publish Date: 2009-07-15
  • In order to improve efficiency of support vector machine for classification on dealing with large amount of samples,least squares support vector machine for classification method was introduced into the reliability analysis,in which the solving of support vector machine was transformed from a quadratic programming to a group of linear equations to reduce computational cost.The numerical results indicate that the reliability method based on least squares vector for classification has excellent accuracy and a smaller computational cost than support vector machine method.
  • loading
  • [1]
    Gomes H M,Awruch A M. Comparison of response surface and neural network with other methods for structural reliability analysis[J].Structural Safety,2004,26(1):49-67. doi: 10.1016/S0167-4730(03)00022-5
    [2]
    Lee S H,Kwak B M. Response surface augmented moment method for efficient reliability analysis[J].Structural Safety,2006,28(3):261-272. doi: 10.1016/j.strusafe.2005.08.003
    [3]
    Bucher C G,Bourgund U. A fast and efficient response surface approach for structural reliability problems[J].Structural Safety,1990,7(1):57-66. doi: 10.1016/0167-4730(90)90012-E
    [4]
    Rajashekhar M R,Ellingwood B R. A new look at the response surface approach for reliability analysis[J].Structural Safety,1993,12(3):205-220. doi: 10.1016/0167-4730(93)90003-J
    [5]
    Kim S H,Na S W. Response surface method using vector projected sampling points[J].Structural Safety,1997,19(1):3-19. doi: 10.1016/S0167-4730(96)00037-9
    [6]
    Guan H L,Melchers R E. Effect of response surface parameter variation on structural reliability estimates[J].Structural Safety,2001,23(4):429-444. doi: 10.1016/S0167-4730(02)00013-9
    [7]
    Schueremans L,Gemert D V. Benefit of splines and neural networks in simulation based structural reliability analysis[J].Structural Safety,2005,27(3):246-261. doi: 10.1016/j.strusafe.2004.11.001
    [8]
    Hurtado J E,Alvarez D A. Neural-network-based reliability analysis: a comparative study [J].Computer Methods in Applied Mechanics and Engineering,2001,191(1/2):113-132. doi: 10.1016/S0045-7825(01)00248-1
    [9]
    Papadrakakis M,Lagaros N D.Reliability-based structural optimization using neural networks and Monte Carlo simulation[J].Computer Methods in Applied Mechanics and Engineering,2002,191(32): 3491-3507. doi: 10.1016/S0045-7825(02)00287-6
    [10]
    Deng J, Gu D S, Li X B,et al. Structural reliability analysis for implicit performance functions using artificial neural network[J].Structural Safety,2005,27(1):25-48. doi: 10.1016/j.strusafe.2004.03.004
    [11]
    Elhewy A H, Mesbahi M,Pu Y. Reliability analysis of structures using neural network method[J].Probabilistic Engineering Mechanics,2006,21(1):44-53. doi: 10.1016/j.probengmech.2005.07.002
    [12]
    Cheng J,Li Q S. Reliability analysis of structures using artificial neural network based genetic algorithms[J].Computer Methods in Applied Mechanics and Engineering,2008,197(45/48): 3742-3750. doi: 10.1016/j.cma.2008.02.026
    [13]
    Cardoso J B, Almeida J R, Dias J M,et al. Structural reliability analysis using Monte Carlo simulation and neural networks[J].Advances in Engineering Software,2008,39(6):505-513. doi: 10.1016/j.advengsoft.2007.03.015
    [14]
    Rocco C M, Moreno J A. Fast Monte Carlo reliability evaluation using support vector machine[J].Reliability Engineering and System Safety,2002,76(3):237-243. doi: 10.1016/S0951-8320(02)00015-7
    [15]
    Hurtado J E, Alvarez D A. Classification approach for reliability analysis with stochastic finite~element modeling[J].Journal of Structural Engineering,2003,129(8):1141-1149. doi: 10.1061/(ASCE)0733-9445(2003)129:8(1141)
    [16]
    李洪双,吕震宙,岳珠峰. 结构可靠性分析的支持向量机方法[J]. 应用数学和力学,2006,27(10):1135-1143.
    [17]
    Chua K S. Efficient computations for large least square support vector machine classifiers[J].Pattern Recognition Letters,2003,24(1/3):75-80. doi: 10.1016/S0167-8655(02)00190-3
    [18]
    Vapnik V N.Statistical Learning Theory[M].New York:John Wiley, 1998.
    [19]
    Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J].Neural Processing, Letters,1999,9(3): 293-300. doi: 10.1023/A:1018628609742
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1646) PDF downloads(747) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return