LUO Xue-ping, HUANG Nan-jing. Generalized H-η-Accretive Operators in Banach Spaces With an Application to Variational Inclusions[J]. Applied Mathematics and Mechanics, 2010, 31(4): 472-480. doi: 10.3879/j.issn.1000-0887.2010.04.009
Citation: LUO Xue-ping, HUANG Nan-jing. Generalized H-η-Accretive Operators in Banach Spaces With an Application to Variational Inclusions[J]. Applied Mathematics and Mechanics, 2010, 31(4): 472-480. doi: 10.3879/j.issn.1000-0887.2010.04.009

Generalized H-η-Accretive Operators in Banach Spaces With an Application to Variational Inclusions

doi: 10.3879/j.issn.1000-0887.2010.04.009
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-02-10
  • Publish Date: 2010-04-15
  • A new notion of generalizedH-η-accretive operator which provided a unifying framework for the generalizedm-accretive operator and theH-η-mono tone operator in Banach spaces was introduced and studied.A resolvent operator associated with the generalizedH-η-accretive operator was defined and its Lipschitz continuity was shown.As an application,the solvability for a class of variational inclusion sinvolving the generalizedH-η-accretive operators in Banach spaces was considered.By using the technique of resolvent mapping,aniterative algorithm for solving the variational inclusion in Banach space was constructed.Under some suitable conditions,the existence of solution for the variational inclusion and the convergence of iterative sequence generated by the algorithm were proved.
  • loading
  • [1]
    Ding X P, Luo C L.Perturbed proximal point algorithm for generalized quasi-variational like inclusions[J].J Comput Appl Math,2000,113(1/2): 153-165. doi: 10.1016/S0377-0427(99)00250-2
    [2]
    Huang N J, Fang Y P.A new class of general variational inclusions involving maximal η-monotone mappings[J].Publ Math Debrecen,2003,62(1/2): 83-98.
    [3]
    Fang Y P, Huang N J.H-monotone operator and resolvent operator technique for variational inclusions[J].Appl Math Comput,2003,145(2/3): 795-803. doi: 10.1016/S0096-3003(03)00275-3
    [4]
    Fang Y P,Huang N J,Thompson H B.A new system of variational inclusions with (H,η)-monotone operators in Hilbert spaces[J].Comput Math Appl,2005,49(2/3): 365-374. doi: 10.1016/j.camwa.2004.04.037
    [5]
    Verma R U. A-monotonicity and applications to nonlinear inclusion problems[J].J Appl Math Stochastic Anal,2004,17(2): 193-195.
    [6]
    Verma R U.Generalized nonlinear variational inclusion problems involving A-monotone mappings[J].Appl Math Lett,2006,19(9): 960-963. doi: 10.1016/j.aml.2005.11.010
    [7]
    Verma R U.Approximation sovability of a class of nonlinear set-valued inclusions involving (A,η)-monotone mappings[J].J Math Appl Anal,2008,337(2): 969-975. doi: 10.1016/j.jmaa.2007.01.114
    [8]
    Zhang Q B.Generalized implicit variational-like inclusion problems involving G-η-monotone mappings[J].Appl Math Lett,2007,20(2): 216-221. doi: 10.1016/j.aml.2006.04.002
    [9]
    Sun J H,Zhang L W,Xiao X T.An algorithm based on resolvent operators for solving variational inequalities in Hilbert spaces[J].Nonlinear Anal,2008,69(10): 3344-3357. doi: 10.1016/j.na.2007.09.026
    [10]
    Fang Y P, Huang N J.H-accretive operator and resolvent operator technique for solving variational inclusions in Banach spaces[J].Appl Math Lett,2004,17(6): 647-653. doi: 10.1016/S0893-9659(04)90099-7
    [11]
    Fang Y P, Huang N J.Iterative algorithm for a system of variational inclusions involving H-accretive operators in Banach spaces[J].Acta Math Hungar,2005,108(3): 183-195. doi: 10.1007/s10474-005-0219-6
    [12]
    Lan H Y,Cho Y J,Verma R U.Nonlinear relaxed cocoercive variational inclusions involving (A,η)-accretive mappings in Banach spaces[J].Comput Math Appl,2006,51(9/10): 1529-1538. doi: 10.1016/j.camwa.2005.11.036
    [13]
    Lan H Y.(A,η)-accretive mappings and set-valued variational inclusions with relaxed cocoercive mappings in Banach spaces[J].Appl Math Lett,2007,20(5): 571-577. doi: 10.1016/j.aml.2006.04.025
    [14]
    Zou Y Z, Huang N J.H(·,·)-accretive operator with an application for solving variational inclusions in Banach spaces[J].Appl Math Comput,2008,204(2): 809-816. doi: 10.1016/j.amc.2008.07.024
    [15]
    Zou Y Z, Huang N J.A new system of variational inclusions involving H(·,·)-accretive operator in Banach spaces[J].Appl Math Comput,2009,212(1): 135-144. doi: 10.1016/j.amc.2009.02.007
    [16]
    Xia F Q, Huang N J.Variational inclusions with a general H-monotone operator in Banach spaces[J].Comput Math Appl,2007,54(1): 24-30. doi: 10.1016/j.camwa.2006.10.028
    [17]
    Ding X P, Feng H R.Algorithm for solving a new class of generalized nonlinear implicit qusi-variational inclusions in Banach spaces[J].Appl Math Comput,2009,208(2): 547-555. doi: 10.1016/j.amc.2008.12.028
    [18]
    Feng H R, Ding X P.A new system of generalized nonlinear quasi-variational-like inclusions with A-monotone operators in Banach spaces[J].J Comput Appl Math,2009,225(2): 365-373. doi: 10.1016/j.cam.2008.07.048
    [19]
    Lou J,He X F,He Z.Iterative methods for solving a system of variational inclusions involving H-η-monotone operators in Banach spaces[J].Comput Math Appl,2008,55(7): 1832-1841. doi: 10.1016/j.camwa.2007.07.010
    [20]
    丁协平,王中宝.Banach空间内涉及H-η-单调算子的集值混合拟似变分包含组[J].应用数学和力学,2009,30(1): 1-14.
    [21]
    Luo X P, Huang N J.A new class of variational inclusions with B-monotone operators in Banach spaces[J].J Comput Appl Math,2010,233(8): 1888-1896. doi: 10.1016/j.cam.2009.09.025
    [22]
    Huang N J.Nonlinear implicit quasi-variational inclusions involving generalized m-accretive mappings[J].Arch Inequal Appl,2004,2(4): 413-426.
    [23]
    Ahmad R, Usman F.System of generalized variational inclusions with H-accretive operators in uniformly smooth Banach spaces[J].J Comput Appl Math,2009,230(2): 424-432. doi: 10.1016/j.cam.2008.12.008
    [24]
    Ding X P, Feng H R.The P-step iterative algorithm for a system of generalized mixed quasi-variatonal inclusions with (A,η)-accretive operators in q-uniformly smooth Banach spaces[J].J Comput Appl Math,2008,220(1/2): 163-174. doi: 10.1016/j.cam.2007.08.003
    [25]
    Huang N J.Generalized nonlinear variational inclusions with noncompact valued mappings[J].Appl Math Lett,1996,9(3): 25-29.
    [26]
    Huang N J.Mann and Ishikawa type perturbed iterative algorithms for generalized nonlinear implicit quasi-variational inclusions[J].Comput Math Appl,1998,35(10): 1-7.
    [27]
    Jin M M, Liu Q K.Nonlinear quasi-variational inclusions involving generalized m-accretive mappings[J].Nonlinear Funct Anal Appl,2004,9(3): 485-494.
    [28]
    Lan H Y,Kim J H,Cho Y J.On a new system of nonlinear A-monotone multivalued variational inclusions[J].J Math Anal Appl,2007,327(1): 481-493. doi: 10.1016/j.jmaa.2005.11.067
    [29]
    Peng J W, Zhu D L.A system of variational inclusions with P-η-accretive operators[J].J Comput Appl Math,2008,216(1): 198-209. doi: 10.1016/j.cam.2007.05.003
    [30]
    Verma R U.On the generalized proximal point algorithm with applications to inclusion problems[J].J Indust Manag Optim,2009,5(2): 381-390. doi: 10.3934/jimo.2009.5.381
    [31]
    Verma R U.Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)-resolvent operator technique[J].Appl Math Lett,2006,19(12): 1409-1413. doi: 10.1016/j.aml.2006.02.014
    [32]
    Xia F Q, Huang N J.Algorithm for solving a new class of general mixed variational inequalities in Banach spaces[J].J Comput Appl Math,2008,220(1/2): 632-642. doi: 10.1016/j.cam.2007.09.011
    [33]
    Huang N J, Fang Y P.Fixed point theorem and a new system of multivalued generalized order complementarity problems[J].Positivity,2003,7(3): 257-265. doi: 10.1023/A:1026222030596
    [34]
    Huang N J, Fang Y P.Generalized m-accretive mappings in Banach spaces[J].J Sichuan Univ,2001,38(4): 591-592.
    [35]
    Petryshyn W V.A characterization of strictly convexity of Banach spaces and other uses of duality mappings[J].J Funct Anal,1970,6(2): 282-291. doi: 10.1016/0022-1236(70)90061-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1595) PDF downloads(802) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return