ZHAO Yong, ZONG Zhi, ZOU Wen-nan. Numerical Simulation of Vortex Evolution Based on Adaptive Wavelet Method[J]. Applied Mathematics and Mechanics, 2011, 32(1): 33-43. doi: 10.3879/j.issn.1000-0887.2011.01.004
 Citation: ZHAO Yong, ZONG Zhi, ZOU Wen-nan. Numerical Simulation of Vortex Evolution Based on Adaptive Wavelet Method[J]. Applied Mathematics and Mechanics, 2011, 32(1): 33-43.

# Numerical Simulation of Vortex Evolution Based on Adaptive Wavelet Method

##### doi: 10.3879/j.issn.1000-0887.2011.01.004
• Rev Recd Date: 2010-10-29
• Publish Date: 2011-01-15
• The application of wavelet method to vortex motion's prediction was investigated.First,the wavelet method was used to solve two initial boundary problems so as to verify its abilities of controlling numerical errors and capturing local structures.Then,the adaptive wavelet method was used to simulate the vortex emerging process.The results show that the wavelet method can predict the vortex evolution precisely and effectively.The application of this method to turbulence is suggested at last.
•  [1] 梅树立, 陆启韶, 张森文, 金俐. 偏微分方程的区间小波自适应精细积分法[J]. 应用数学和力学, 2005, 26(3): 333-340.(MEI Shu-li, LU Qi-shao, ZHANG Sen-wen, JIN Li. Adaptive interval wavelet precise integration method for partial differential equations[J]. Applied Mathematics and Mechanics(English Edition), 2005, 26 (3): 364-371.) [2] Beylkin G, Keiser J. On the adaptive numerical solution of nonlinear partial differential equations in wavelet bases[J]. Journal of Computational Physics , 1997, 132(2): 233-259. [3] 宗智，赵勇，邹文楠. 小波插值方法自适应数值求解时间进化微分方程[J].计算力学学报, 2010, 27(1): 65-69.(ZONG Zhi, ZHAO Yong, ZOU Wen-nan. Numerical solution for differential evolutional equation using adaptive interpolation wavelet method[J]. Journal of Computational Mechanics, 2010, 27(1): 65-69. (in Chinese)) [4] Qian S, Wiess J. Wavelets and the numerical solution of partial differential equations [J]. Journal of Computational Physics, 1993, 106(1):155-175. [5] Farge M, Schneider K, Kevlahan N K R. Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis[J]. Physics of Fluids, 1999, 11(8):2187-2201. [6] Farge M, Kaiser S. Coherent vortex simulation (CVS), a semi-deterministic turbulence model using wavelets[J]. Flow, Turbulence and Combustion, 2001, 66(4):393-426. [7] 郭会芬, 邱翔, 刘宇陆.小波变换在湍流数值研究中的应用[J]. 计算力学学报, 2006, 23(1): 58-64.(GUO Hui-fen, QIU Xiang, LIU Yu-lu. Application of wavelet analysis in numerical study of turbulence[J]. Journal of Computational Mechanics, 2006 , 23(1): 58-64. (in Chinese)) [8] 夏振炎, 田砚, 姜楠. 用子波谱分析壁湍流多尺度结构的能量传递[J]. 应用数学和力学, 2009, 30(4):409-416.（XIA Zhen-yan, TIAN Yan, JIANG Nan. Wavelet spectrum analysis on energy transfer of multi-scale structures in wall turbulence[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30(4): 435-443. ） [9] Goldstein D E, Vasilyev O V. Stochastic coherent adaptive large eddy simulation method[J]. Physics of Fluids, 2004, 16(7):2497-2513. [10] Schneider K, Kevlahan N K R, Farge M. Comparison of an adaptive wavelet method and nonlinearly filtered pseudo-spectral methods for two-dimensional turbulence[J]. Theory and Computational Fluid Dynamics, 1997, 9(3): 191-206. [11] Kumar B V R, Mehra M. A time accurate pseudo-wavelet scheme for two-dimensional turbulence[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2005, 3(4):587-599. [12] Farge M.Wavelet transforms and their application to turbulence[J]. Ann Rev Fluid Mech, 1992, 24:395-457.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142