LI Shan-qing, YUAN Hong. Quasi-Green’s Function Method for Free Vibration of Clamped Thin Plates on Winkler Foundation[J]. Applied Mathematics and Mechanics, 2011, 32(3): 253-262. doi: 10.3879/j.issn.1000-0887.2011.03.001
 Citation: LI Shan-qing, YUAN Hong. Quasi-Green’s Function Method for Free Vibration of Clamped Thin Plates on Winkler Foundation[J]. Applied Mathematics and Mechanics, 2011, 32(3): 253-262.

# Quasi-Green’s Function Method for Free Vibration of Clamped Thin Plates on Winkler Foundation

##### doi: 10.3879/j.issn.1000-0887.2011.03.001
• Rev Recd Date: 2011-01-14
• Publish Date: 2011-03-15
• The quasi-Green's function method was employed to solve the free vibration problem of clamped thin plates on Winkler foundation.A quasi-Green's function was established by using the fundamental solution and boundary equation of the problem.This function satisfies the homogeneous boundary condition of the problem.The mode shape differential equation of the free vibration problem of clamped thin plates on Winkler foundation was reduced to Fredholm integral equations of the second kind by Green formula.Irregularity of the kernel of integral equation was overcome by choosing a suitable form of the normalized boundary equation.Numerical results show high accuracy of the method given by the present paper,and it is an effective mathematical method.

•  [1] 曾祥勇, 朱爱军, 邓安福. 自然单元法在Winkler地基薄板计算中的应用[J].计算力学学报, 2008, 25(4):547-551.(ZENG Xiang-yong, ZHU Ai-jun, DENG An-fu. Application of natural element method to solution of elastic thin plate bending on Winkler soil foundation[J]. Chinese Journal of Computational Mechanics, 2008, 25(4): 547-551.(in Chinese)) [2] 马丽红, 邱志平, 王晓军, 张建辉. Winkler地基板的区间无网格Galerkin方法[J].岩土工程学报, 2008 , 30(3):384-389.(MA Li-hong, QIU Zhi-ping, WANG Xiao-jun, ZHANG Jian-hui. Interval element-free Galerkin method for plates on Winkler foundation[J].Chinese Journal of Geotechnical Engineering, 2008, 30(3): 384-389.(in Chinese)) [3] 钟阳, 周福霖, 张永山. 弹性地基上四边自由矩形薄板振动分析的Kantorovich法[J].振动与冲击, 2007, 26(3):33-36.(ZHONG Yang, ZHOU Fu-lin, ZHANG Yong-shan. Vibration analysis of a thin plate on Winkler foundation with completely free boundary by Kantorovich method[J].Journal of Vibration and Shock, 2007, 26(3): 33-36.(in Chinese)) [4] 熊渊博, 龙述尧, 李光耀.弹性地基板分析的局部Petrov-Galerkin方法[J]. 土木工程学报, 2005, 38(11):79-83.(XIONG Yuan-bo, LONG Shu-yao, LI Guang-yao. A local Petrov-Galerkin method for analysis of plates on elastic foundation[J].China Civil Engineering Journal, 2005, 38(11):79-83.(in Chinese)) [5] 张伟星, 庞辉. 弹性地基板计算的无单元法[J]. 工程力学, 2000 , 17(3):138-144.(ZHANG Wei-xing, PANG Hui. The element-free method for the bending problem of plates on elastic foundation[J].Engineering Mechanics, 2000, 17(3):138-144.(in Chinese)) [6] 李宁, 吴培德. Winkler地基上弹性薄板求解的有限差分法[J]. 解放军理工大学学报（自然科学版）, 2004 , 5(5):64-66.(LI Ning, WU Pei-de. Elastic plate resting on Winkler foundation by finite difference method[J].Journal of PLA University of Science and Technology, 2004, 5(5):64-66.(in Chinese)) [7] 王元汉, 邱先敏, 张佑启. 弹性地基板的等参有限元法计算[J]. 岩土工程学报, 1998 , 20(4):7-11.(WANG Yuan-han, QIU Xian-min, CHEUNG Y K. Plates on an elastic foundation calculated by isoparametric element methods[J].Chinese Journal of Geotechnical Engineering, 1998, 20(4):7-11.(in Chinese)) [8] 佘颖禾, 朱万宁. 弹性地基板的无奇异边界元解法[J]. 计算结构力学及其应用, 1991, 8(3):267-274.(SHE Ying-he, ZHU Wan-ning. A boundary element solution for the bending problem of the thin plates on elastic foundation[J].Computational Structural Mechanics and Applications, 1991, 8(3):267-274.(in Chinese)) [9] 赵雷. 弹性地基板自由振动的样条函数解[J]. 西南交通大学学报, 1993, 91(3):99-104. (ZHAO Lei. Analysis of free vibration problems of plates on elastic foundation by the spline function[J].Journal of Southwest Jiaotong University, 1993, 91(3):99-104.(in Chinese)) [10] 秦荣, 何昌如. 弹性地基薄板的静力和动力分析[J]. 土木工程学报, 1988, 21(3):71-80. (QIN Rong, HE Chang-ru. Static and dynamic analysis of thin plates on elastic foundation[J].China Civil Engineering Journal, 1988, 21(3):71-80.(in Chinese)) [11] 王有成, 张伟星. 样条边界元法解Winkler地基板[J].合肥工业大学学报, 1984, (4):15-28. (WANG You-cheng, ZHANG Wei-xing. Spline boundary element method for plates on Winkler foundation[J].Journal of Hefei Polytechnic University, 1984, (4): 15-28.(in Chinese)) [12] 文丕华. 求解弹性地基圆板问题的点源法[J]. 工程力学, 1987, 4(2):18-26.(WEN Pi-hua. Point intensity method of solving circular plate resting on elastic foundation[J].Engineering Mechanics, 1987, 4(2):18-26.(in Chinese)) [13] 黄炎. 矩形薄板弹性振动的一般解析解[J]. 应用数学和力学, 1988, 9(11): 993-1000.(HUANG Yan. A general analytical solution for elastic vibration of rectangular thin plate[J]. Applied Mathematics and Mechanics(English Edition), 1988, 9(11): 1057-1065.) [14] Selvadurai A P S. Elastic Analysis of Sail-Foundation Interaction[M]. Amsterdam: Elsevier, 1979. [15] Katsikadelis J T, Kallivokas L F. Plates on biparametric elastic foundation by BDIE method[J]. Journal for Eng Mech, 1988, 114(5) :847-875. [16] 夏世群, 冯正农. 一种求解薄板稳定及振动问题的边界元法[J]. 上海力学, 1992 , 13(1):62-67. (XIA Shi-qun, FENG Zheng-nong. A boundary element method for the stability and vibration problems of thin plates[J].Shanghai Journal of Mechanics, 1992, 13(1):62-67.(in Chinese)) [17] Jari P, Pentti V. Boundary element analysis of a plate on elastic foundation[J]. International Journal for Numerical Methods in Engineering, 1986, 23(2):287-305. [18] Rvachev V L. Theory of R-Function and Some of Its Application[M]. Kiev: Nauk Dumka, 1982:415-421.( in Russian) [19] 袁鸿. Winkler地基上薄板问题的准格林函数方法[J].计算力学学报, 1999, 16(4): 478-482. (YUAN Hong. Quasi-Green’s function method for thin plates on Winkler foundation[J].Chinese Journal Computational Mechanics, 1999, 16(4):478-482.(in Chinese)) [20] 王红, 袁鸿. 准格林函数方法在弹性扭转问题中的应用[J]. 华南理工大学学报（自然科学版）, 2004, 32(11):86-88. (WANG Hong, YUAN Hong. Application of quasi-Green’s function method in elastic torsion[J].Journal of South China University of Technology(Nature Science Edition), 2004, 32(11):86-88.(in Chinese)) [21] 王红, 袁鸿. R-函数理论在梯形截面柱弹性扭转问题中的应用[J]. 华中科技大学学报（自然科学版）, 2005, 33(11):99-101. (WANG Hong, YUAN Hong. Application of R-function theory to the problem of elastic torsion with trapezium sections[J].Journal of Huazhong University of Science & Technology(Nature Science Edition), 2005, 33(11):99-101.(in Chinese)) [22] 袁鸿, 李善倾, 刘人怀. Pasternak地基上简支板振动问题的准格林函数方法[J]. 应用数学和力学, 2007, 28(7):757-762. (YUAN Hong, LI Shan-qing, LIU Ren-huai. Quasi-Green’s function method for vibration of simply-supported thin polygonic plates on Pasternak foundation[J]. Applied Mathematics and Mechanics(English Edtion), 2007, 28(7):847-853. doi: 10.1007/s10483-007-0701-y.) [23] 李善倾, 袁鸿. 简支梯形底扁球壳自由振动问题的准Green函数方法[J]. 应用数学和力学, 2010, 31(5):602-608. (LI Shan-qing, YUAN Hong. Quasi-Green’s function method for free vibration of simply-supported trapezoidal shallow spherical shell[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(5):635-642. doi: 10.1007/s10483-010-0511-7.) [24] 曹志远. 板壳振动理论[M]. 北京:中国铁道出版社, 1989. (CAO Zhi-yuan. Vibration Theory of Plates and Shells[M].Beijing: China Railway Press, 1989.(in Chinese)) [25] Ortner V N. Regularisierte faltung von distributionen—teil 2: eine tabelle von fundame ntallocunngen[J]. ZAMP, 1980, 31(1):155-173. [26] Kurpa L V. Solution of the problem of deflection and vibration of plates by the R-function method[J]. Inter Appl Mech, 1984, 20(5):470-473.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142