Citation: | OU Zhi-ying, WU Ya-wen. Effects of Surface Stresses on Contact Problems of an Elastic Half Plane With a Circular Cavity[J]. Applied Mathematics and Mechanics, 2015, 36(6): 607-615. doi: 10.3879/j.issn.1000-0887.2015.06.005 |
[1] |
Ou Z Y, Pang S D. Fundamental solutions to Hertzian contact problems at nanoscale[J].Acta Mechanica,2013,224(1): 109-121.
|
[2] |
Verruijt A. Deformations of an elastic half plane with a circular cavity[J]. International Journal of Solids and Structures,1998,35(21): 2795-2804.
|
[3] |
Ou Z Y, Wang G F, Wang T J. Effect of residual surface tension on the stress concentration around a nanosized spheroidal cavity[J]. International Journal of Engineering and Scientific Research,2008,46(5): 475-485.
|
[4] |
Miri A K, Avazmohammadi R, YANG Fu-qian. Effect of surface stress on the deformation of an elastic half-plane containing a nano-cylindrical hole under a surface loading[J].Journal of Computational and Theoretical Nanoscience,2011,8(2): 231-236.
|
[5] |
Wang G F, Feng X Q. Effects of surface stresses on contact problems at nanoscale[J].Journal of Applied Physics,2007,101(1): 013510.
|
[6] |
WANG Gang-feng, FENG Xi-qiao. Effects of the surface elasticity and residual surface tension on the natural frequency of microbeams[J]. Applied Physics Letters,2009,90(23): 231904.
|
[7] |
Gurtin M E. A general theory of curved deformable interfaces in solids at equilibrium[J]. Philosophical Magazine A,1998,78(5): 1093-1109.
|
[8] |
Shenoy V B. Size-dependent rigidities of nanosized torsional elements[J]. International Journal of Solids and Structures,2002,39(15): 4039-4052.
|
[9] |
Sharma P, Ganti S. Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities[J]. Applied Physics Letters,2003,82(4): 535-537.
|
[10] |
Sharma P, Ganti S. Size-dependent Eshelby’s tensor for embedded nanoinclusions incorporating surface/interface energies[J]. Journal of Applied Mechanics,2004,71(5): 663-671.
|
[11] |
Jammes M, Mogilevskaya S G, Crouch S L. Multiple circular nano-inhomogeneities and/or nano-pores in one of two joined isotropic elastic half-planes[J]. Engineering Analysis With Boundary Elements,2009,33(2): 233-248.
|
[12] |
Wang L G, Kratzer P, Scheffler M, Moll N. Formation and stability of self-assembled coherent islands in highly mismatched heteroepitaxy[J]. Physical Review Letters,1999,82(20): 4042-4045.
|
[13] |
Farrokhabadi A, Koochi A. Effects of size-dependent elasticity on stability of nanotweezers[J]. Applied Mathematics and Mechanics(English Edition),2014,35(12): 1573-1590.
|
[14] |
Amirian B, Hosseini-Ara R, Moosavi H. Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model[J]. Applied Mathematics and Mechanics(English Edition),2014,35(7): 875-886.
|
[15] |
Zhao X J, Rajapakse R K N D. Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects[J]. International Journal of Engineering Science,2009,47(11/12): 1433-1444.
|
[16] |
Muskhelishvili N I. Some Basic Problem of Mathematical Theory of Elasticity [M]. Groningen: Noordhoff Ltd, 1963.
|
[17] |
Barboni R, Gaudenzi P, Carlini S. A three-dimensional analysis of edge effects in composite laminates with circular holes[J]. Composite Structures,1990,15(2): 115-136.
|