文章编号:1000-0887(2019)07-0768-12

ⓒ 应用数学和力学编委会, ISSN 1000-0887

多体系统动力学微分-代数方程 L-稳定方法^{*}

李博文1, 丁洁玉1,2, 李亚男1

(1. 青岛大学 数学与统计学院,山东 青岛 266071;2. 青岛大学 计算力学与工程仿真研究中心,山东 青岛 266071)

摘要: 针对多体系统动力学微分-代数方程形式,在时间区间上构造 L-稳定方法,分别基于等距 节点、Chebyshev 节点和 Legendre 节点等非等距节点建立求解格式,依据 Ehle 定理及猜想,与 Padé 逼近式对比得到待定矩阵和向量,从而获得 L-稳定求解公式,循环求解过程采用 Newton 迭代法计算.以平面双连杆机械臂系统为例,使用 L-稳定方法进行数值仿真,通过改变时间区间节点数和步长对各个指标结果进行比较,并与经典 Runge-Kutta 法对比.结果表明,该方法具有稳定性好、精度高等优点,适用于长时间情况下的多体系统动力学仿真.

关 键 词: 多体系统动力学; L-稳定方法; 微分-代数方程; Padé 逼近; 稳定性 中图分类号: TP301.6; 0175.1 **文献标志码**: A DOI: 10.21656/1000-0887.400038

引

言

微分方程数值求解的稳定性是判断数值方法好坏的重要指标之一.20世纪 60 年代,经过 Dahlquist、Widlund、Gear 等学者的创新和发展,稳定性理论得到深入发展.Dahlquist^[1]以线性方 程 $y' = \mu y$ 为模型方程提出了 A-稳定,即稳定域包含左半复平面.Widlund^[2]提出了 A(α)-稳 定,即稳定域边界与正实轴的夹角为 α .Gear^[3]提出了刚性稳定,同时将 A-稳定概念推广到非 线性问题.1975 年,Dahlquist^[4]提出了单支方法及线性多步法的 G-稳定概念.Butcher 等^[5-6]以 非线性方程 y' = f(y) 为模型方程,研究了 Runge-Kutta 法的非线性稳定性,建立了 Runge-Kutta 方法的 B-稳定与代数稳定理论,以及一般线性方法的代数稳定准则.Li(李寿佛)^[7]建立了一 般线性方法的 (k, p, q)稳定性理论以及(k, p, q)的弱代数稳定性准则.JT于刚性微分方程,希 望刚性分量能够尽快衰减,同时稳定域包含左半复平面,仅 A-稳定是不够的.Ehle^[8]提出了 L-稳定,Hairer 等^[9]指出 L-稳定的数值方法会引入阻尼效应,但对抑制高频振荡是很有效的,进 而一些学者提出了基于 L-稳定求解刚性方程的隐式单步法和多步法,这些方法多基于常微分 方程,针对微分-代数方程的 L-稳定方法研究相对较少.

多体系统动力学方程的典型形式为微分-代数方程,由常微分运动方程和代数约束方程组成,其数值求解是多体系统动力学研究中的热点和难点.目前微分-代数方程的数值解法主要 有直接积分法、精细指数积分法^[10]、最优控制保辛算法^[11]、Newmark-β类方法等.这些方法针

^{*} 收稿日期: 2019-01-17;修订日期: 2019-02-09

基金项目: 国家自然科学基金(11472143;11772166)

作者简介: 李博文(1995 -),女,硕士生(E-mail: 1032788712@qq.com); 丁洁玉(1978 -),女,教授,博士,博士生导师(通讯作者. E-mail: djy@qdu.edu.cn).

对特定问题表现出了较高的数值精度,例如,精细指数积分法主要求解弱非线性问题,其数值 精度要比同阶的 Runge-Kutta 方法高;最优控制保辛算法在轨迹追踪等方面发挥了很大优势, 能较好地与目标轨迹相吻合; Newmark-β 类方法在短时间仿真下表现出较好的收敛性,长时 间仿真过程中误差累积较为严重^[12],需结合约束投影等方法进行修正^[13-14],这些方法对于稳 定性的研究相对较少.本文建立了多体系统动力学微分-代数方程的 L-稳定方法一般形式,基 于等距节点、Chebyshev 节点和 Legendre 节点给出了具体构造过程,并通过平面双连杆机械臂 系统进行验证比较方程的 L-稳定方法一般形式,基于等距节点、Chebyshev 节点和 Legendre 节 点给出了具体构造过程,并通过平面双连杆机械臂系统进行验证比较.

1 多体系统动力学微分-代数方程

多体系统动力学指标-3的微分-代数方程形式为

$$\begin{cases} \boldsymbol{M}(\boldsymbol{q})\ddot{\boldsymbol{q}} + \boldsymbol{\Phi}_{\boldsymbol{q}}^{\mathrm{T}}(\boldsymbol{q},t)\boldsymbol{\lambda} - \boldsymbol{F}(\dot{\boldsymbol{q}},\boldsymbol{q},t) = \boldsymbol{0}, \end{cases}$$
(1)

 $\int \boldsymbol{\Phi}(\boldsymbol{q},t) = \boldsymbol{0},$

其中 $\boldsymbol{q} = [q_1(t) \quad q_2(t) \quad \cdots \quad q_n(t)]^T$ 为系统的广义坐标, $\boldsymbol{\dot{q}} = d\boldsymbol{q}/dt$ 为广义速度, $\boldsymbol{\ddot{q}} = d^2\boldsymbol{q}/dt^2$ 为广义加速度, $\boldsymbol{\lambda} = [\lambda_1 \quad \lambda_2 \quad \cdots \quad \lambda_m]^T$ 是 Lagrange 乘子, $\boldsymbol{M} \in R^{n \times n}$ 是对称正定的质量矩阵, $\boldsymbol{F} \in R^n$ 是广义力矢量, $\boldsymbol{\Phi} = [\boldsymbol{\Phi}_1 \quad \boldsymbol{\Phi}_2 \quad \cdots \quad \boldsymbol{\Phi}_m]^T$ 为 *m* 个完整的位移约束.

对约束方程 **Φ**关于时间 *t*分别求一、二阶导数,并与方程(1)中的微分方程联立可得如下 指标-2、指标-1 的微分-代数方程形式:

$$\begin{pmatrix} \boldsymbol{M}(\boldsymbol{q}) \ddot{\boldsymbol{q}} + \boldsymbol{\Phi}_{\boldsymbol{q}}^{\mathrm{T}}(\boldsymbol{q},t) \boldsymbol{\lambda} - \boldsymbol{F}(\dot{\boldsymbol{q}},\boldsymbol{q},t) = \boldsymbol{0}, \\ \boldsymbol{\lambda} = \boldsymbol{0},$$

$$(2)$$

$$(\boldsymbol{\Phi}_{\boldsymbol{q}}(\boldsymbol{q},t)\boldsymbol{\dot{q}}+\boldsymbol{\Phi}_{t}(\boldsymbol{q},t)=\boldsymbol{0},$$

$$\begin{cases} M(q)\ddot{q} + \Phi_q^{\dagger}(q,t)\lambda - F(\dot{q},q,t) = 0, \\ 0 & \text{if } q & \text$$

 $\left[\boldsymbol{\Phi}_{q}(\boldsymbol{q},t)\boldsymbol{\ddot{q}}+\left[\boldsymbol{\Phi}_{q}(\boldsymbol{q},t)\boldsymbol{\dot{q}}\right]_{q}\boldsymbol{\dot{q}}+2\boldsymbol{\Phi}_{q}(\boldsymbol{q},t)\boldsymbol{\dot{q}}+\boldsymbol{\Phi}_{u}(\boldsymbol{q},t)=\boldsymbol{0}.\right]$

当初值 $q_0 = q(0)$, $\dot{q}_0 = \dot{q}(0)$ 已知时,可以使用 Runge-Kutta 法直接求解指标-1(方程(3)),但 在选取步长较大的情况下,会导致精度降低,总能量随时间而增大^[15];步长较小,会导致计算 效率降低,而且稳定性较差,并且对于指标-3(方程(1))和指标-2(方程(2)),不能使用 Runge-Kutta 法直接求解.下面构造 L-稳定方法,可以用于求解指标-1、-2、-3 的多体系统动力学微分-代数方程.

2 微分-代数方程 L 稳定格式的构造

2.1 L稳定方法的一般形式

1972年,Shampine和 Watts^[16]提出了求解常微分方程的块隐式单步法,将 r 个离散时刻做成一个块向量,由一个时刻的输入值得到 r 个时刻的输出值,并证明了该方法是 A-稳定的.这种方法每个块向量中的时间步长是等距的.本文对其进行改进,将块向量对应于单步区间中取点,即在迭代求解过程中,设单步区间 [t_k , t_{k+1}],时间步长 $h = t_{k+1} - t_k$,选取节点 c_i ($i = 1, 2, \cdots, r$), $t_k < c_1 < c_2 < \cdots < c_r = t_{k+1}$,构造微分-代数方程求解格式,其中 c_i ($i = 1, 2, \cdots, r$)可以是等距节点,也可以是非等距节点.以多体系统动力学微分-代数指标-1(方程(3))为例,降阶后可得如下一阶微分方程组:

$$\begin{cases} \boldsymbol{q} = \boldsymbol{z}, \\ \boldsymbol{M}(\boldsymbol{q})\boldsymbol{\dot{z}} + \boldsymbol{\Phi}_{\boldsymbol{q}}^{\mathrm{T}}(\boldsymbol{q},t)\boldsymbol{\lambda} - \boldsymbol{F}(\boldsymbol{z},\boldsymbol{q},t) = \boldsymbol{0}, \\ \boldsymbol{\Phi}_{\boldsymbol{q}}(\boldsymbol{q},t)\boldsymbol{\dot{z}} + [\boldsymbol{\Phi}_{\boldsymbol{q}}(\boldsymbol{q},t)\boldsymbol{z}]_{\boldsymbol{q}}\boldsymbol{z} + 2\boldsymbol{\Phi}_{\boldsymbol{q}}(\boldsymbol{q},t)\boldsymbol{z} + \boldsymbol{\Phi}_{\boldsymbol{u}}(\boldsymbol{q},t) = \boldsymbol{0}. \end{cases}$$
(4)

令

$$\dot{\mathbf{y}} = \begin{bmatrix} \dot{\mathbf{q}}^{\mathrm{T}} & \dot{\mathbf{z}}^{\mathrm{T}} & \mathbf{\lambda}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} \in R^{2n+m}, \ \mathbf{y}_{i} = \mathbf{y}(c_{i}), \ \dot{\mathbf{y}}_{i} = \dot{\mathbf{y}}(c_{i}), \qquad i = 1, 2, \cdots, r$$

$$\mathbf{Y} = \begin{bmatrix} \mathbf{y}_{1}^{\mathrm{T}} & \mathbf{y}_{2}^{\mathrm{T}} & \cdots & \mathbf{y}_{r}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}, \ \dot{\mathbf{Y}} = \begin{bmatrix} \dot{\mathbf{y}}_{1}^{\mathrm{T}} & \dot{\mathbf{y}}_{2}^{\mathrm{T}} & \cdots & \dot{\mathbf{y}}_{r}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}},$$

构造求解公式如下:

$$Y = e \otimes y_k + hd \otimes \dot{y}_k + hB \otimes \dot{Y},$$
(5)

其中 $\boldsymbol{e} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^{\mathsf{T}} \in R', \boldsymbol{d} \in R', \boldsymbol{B} \in R'^{\mathsf{x}r}, \boldsymbol{y}_k = \boldsymbol{y}(t_k), \boldsymbol{y}_k = \boldsymbol{y}(t_k), \otimes \mathcal{H}$ Kronecker 积. 将式(5)代人试验方程

$$\begin{cases} \mathbf{y}'(t) = \alpha \mathbf{y}(t), \\ \mathbf{y}(t_0) = \mathbf{y}_0, \end{cases} \quad \operatorname{Re}(\alpha) < 0, \tag{6}$$

得到稳定性函数为

$$\boldsymbol{R}(\lambda) = \boldsymbol{e}_r^{\mathrm{T}} (\boldsymbol{I}_r - \lambda \boldsymbol{B})^{-1} (\boldsymbol{e} + \lambda \boldsymbol{d}), \qquad (7)$$

其中 $\lambda = \alpha h$, I_r , 为r 阶单位矩阵, $e_r = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} \in R^r$. 对稳定性函数 $R(\lambda)$ 使用 Padé 逼近, 可以构造 L-稳定的求解公式.

定理 1(Ehle 定理及猜想) 对于 (*k*,*j*)-Padé 逼近,如果 $k \le j \le k + 2$,那么此 Padé 逼近 为 A-稳定的;如果 $k < j \le k + 2$,那么此 Padé 逼近是 L-稳定的^[17].

对 \mathbf{y}_i , $i = 1, 2, \dots, r$ 在 t_k 处进行 Taylor 展开, 设 $\mathbf{y}_k^{(r+1)} = \mathbf{y}^{(r+1)}(t_k)$ 项系数为待定常数, 略去 后面的高阶项, 即

$$\mathbf{y}_{i} \approx \mathbf{y}_{k} + h_{i} \dot{\mathbf{y}}_{k} + \frac{h_{i}^{2}}{2!} \ddot{\mathbf{y}}_{k} + \dots + \frac{h_{i}^{r}}{r!} \mathbf{y}_{k}^{(r)} + \frac{\mu_{i}}{(r+1)!} \mathbf{y}_{k}^{(r+1)}, \qquad i = 1, 2, \dots, r, \quad (8)$$

其中 μ_i 为待定常数, $h_i = c_i - t_k$.将式(8)代人式(5)可得

$$\begin{bmatrix} \boldsymbol{B} & \boldsymbol{d} \end{bmatrix} = \begin{bmatrix} h_1 & h_1^2 & \cdots & h_1^r & \boldsymbol{\mu}_1 \\ h_2 & h_2^2 & \cdots & h_2^r & \boldsymbol{\mu}_2 \\ & \vdots & & \\ h_r & h_r^2 & \cdots & h_r^r & \boldsymbol{\mu}_r \end{bmatrix} \begin{bmatrix} 1 & 2h_1 & 3h_1^2 & \cdots & (r+1)h_1^r \\ 1 & 2h_2 & 3h_2^2 & \cdots & (r+1)h_2^r \\ & & \vdots & \\ 1 & 2h_r & 3h_r^2 & \cdots & (r+1)h_r^r \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix}^{-1} \boldsymbol{.}$$
(9)

由式(9)可以得到使用待定常数表达的 B,d,代入稳定性函数(7),与相应的 Padé 逼近形式对比即可得到待定常数 μ_i , $i = 1, 2, \cdots, r$ 的值,从而可以得到 B,d的值,代入式(5)可得具体的求解公式形式.

2.2 基于等距节点的 L-稳定格式

对于等距节点 $c_i(i=1,2,\dots,r)$, 有 $c_i = t_k + hi/r$, $i = 1,2,\dots,r$.例如 r = 3, h = 1时,等距节 点为 $c_i = t_k + i/3$, i = 1,2,3, 此时 $h_i = i/3$, i = 1,2,3, 式(9) 变为

$$\begin{bmatrix} \boldsymbol{B} & \boldsymbol{d} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{9} & \frac{1}{27} & \mu_1 \\ \frac{2}{3} & \frac{4}{9} & \frac{8}{27} & \mu_2 \\ 1 & 1 & 1 & \mu_3 \end{bmatrix} \begin{bmatrix} 1 & \frac{2}{3} & \frac{1}{3} & \frac{4}{27} \\ 1 & \frac{4}{3} & \frac{4}{3} & \frac{32}{27} \\ 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 \end{bmatrix}^{-1} .$$
(10)

将 B,d 代入稳定性函数(7)并与(2,3)-Padé 逼近进行对比,可求出待定常数

$$\mu_1 = \frac{1}{45}, \ \mu_2 = \frac{8}{45}, \ \mu_3 = 1,$$

代入B,d的表达式可得

$$\boldsymbol{B} = \frac{1}{3} \begin{pmatrix} \frac{107}{120} & -\frac{37}{120} & \frac{3}{40} \\ \frac{17}{15} & \frac{8}{15} & -\frac{1}{15} \\ \frac{9}{8} & \frac{9}{8} & \frac{3}{8} \end{pmatrix}, \quad \boldsymbol{d} = \frac{1}{3} \begin{pmatrix} \frac{41}{120} \\ \frac{2}{5} \\ \frac{3}{8} \end{pmatrix}.$$
 (11)

将上式代入式(5)可得求解公式.使用同样方法可以构造其他 r 值的 L-稳定求解格式. 2.3 基于非等距节点的 L-稳定格式

当节点
$$c_i(i = 1, 2, \dots, r)$$
 为 Chebyshev 多项式的零点时,在区间 $[t_k, t_{k+1}]$ 内,有
 $c_i = t_k + \frac{h}{2} \left(1 + \cos\left(\frac{2i - 1}{2(r - 1)}\pi\right) \right), \quad i = 1, 2, \dots, r - 1.$

以r = 3, h = 1为例,此时

$$c_1 = t_k + \frac{1}{2} - \frac{\sqrt{2}}{4}, \ c_2 = t_k + \frac{1}{2} + \frac{\sqrt{2}}{4}, \ c_3 = 1,$$

代入式(9)得到

$$\begin{bmatrix} \boldsymbol{B} & \boldsymbol{d} \end{bmatrix} = \begin{bmatrix} h_1 & h_1^2 & h_1^3 & \boldsymbol{\mu}_1 \\ h_2 & h_2^2 & h_2^3 & \boldsymbol{\mu}_2 \\ 1 & 1 & 1 & \boldsymbol{\mu}_3 \end{bmatrix} \begin{bmatrix} 1 & 2h_1 & 3h_1^2 & 4h_1^3 \\ 1 & 2h_2 & 3h_2^2 & 4h_2^3 \\ 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 \end{bmatrix}^{-1},$$
(13)

其中 $h_1 = \frac{1}{2} - \frac{\sqrt{2}}{4}, h_2 = \frac{1}{2} + \frac{\sqrt{2}}{4}.$

将 B,d 代入稳定性函数(7),并与(2,3)-Padé 进行对比,得到

$$\mu_1 = \frac{10 - 5\sqrt{2}}{32}, \ \mu_2 = \frac{10 + 5\sqrt{2}}{32}, \ \mu_3 = 1,$$

从而得到相应的 B,d 为

$$\boldsymbol{B} = \begin{pmatrix} \frac{11 - 2\sqrt{2}}{24} & \frac{5 - 8\sqrt{2}}{24} & \frac{7\sqrt{2} - 1}{48} \\ \frac{5 + 8\sqrt{2}}{24} & \frac{11 + 2\sqrt{2}}{24} & -\frac{7\sqrt{2} + 1}{48} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{6} \end{pmatrix}, \ \boldsymbol{d} = \begin{pmatrix} \frac{\sqrt{2} - 7}{48} & -\frac{\sqrt{2} + 7}{48} & -\frac{1}{6} \end{pmatrix}^{\mathrm{T}} \cdot (14)$$

当节点 $c_i(i = 1, 2, \dots, r)$ 为 Legendre 多项式的零点时,同样以 r = 3, h = 1 为例,得到

$$c_1 = t_{k^+} \frac{1}{2} \left(\frac{-\sqrt{3}}{3} + 1 \right), \ c_2 = t_{k^+} \frac{1}{2} \left(\frac{\sqrt{3}}{3} + 1 \right), \ c_3 = 1,$$

计算可得

$$\mu_1 = \frac{3 - \sqrt{3}}{12}, \ \mu_2 = \frac{3 + \sqrt{3}}{12}, \ \mu_3 = 1$$

相应的 **B**,**d** 为

(12)

$$\boldsymbol{B} = \begin{pmatrix} \frac{27 + \sqrt{3}}{72} & \frac{9 - 17\sqrt{3}}{72} & \frac{3 + 5\sqrt{3}}{72} \\ \frac{9 + 17\sqrt{3}}{72} & \frac{27 - \sqrt{3}}{72} & \frac{3 - 5\sqrt{3}}{72} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}, \ \boldsymbol{d} = \left(-\frac{\sqrt{3} + 3}{72} & \frac{\sqrt{3} - 3}{72} & 0\right)^{\mathrm{T}}.$$
 (15)

将上式代入式(5)可得求解公式.使用同样方法可以构造其他 r 值的非等距节点的 L-稳定求解格式.

3 数值算例

图 1 为一个平面双连杆机械臂,其中连杆的长度用 L_1 , L_2 表示, $L_1 = 1$ m, $L_2 = \sqrt{3}$ m,质量 用 m_1 , m_2 表示, $m_1 = 1$ kg, $m_2 = 2$ kg,转角用 θ_1 , θ_2 表示,在初始时刻, $\theta_1 = \pi/3$, $\theta_2 = -\pi/6$, (x_1,y_1) , (x_2,y_2) 表示两连杆的质心位置坐标.

Fig. 2 The connecting rod end trajectory

根据 Lagrange 函数建立平面双连杆机械臂动力学微分-代数方程,广义坐标和广义质量矩

阵分别为 $\boldsymbol{q} = (x_1, y_1, \theta_1, x_2, y_2, \theta_2)^T$, $\boldsymbol{M} = \text{diag}(m_1, m_1, I_1, m_2, m_2, I_2)$, 其中 $I_1 = (1/12)m_1L_1^2, I_2$ = $(1/12)m_2L_2^2$ 为连杆转动惯量, $\boldsymbol{F} = [0, -m_1g, 0, 0, -m_2g, 0]^T$ 为广义力矢量.

采用(2,4)-Padé 逼近,此时 r = 4,将小区间划分为4等份进行求解,选取步长 h = 0.01, 仿真时间为10 s,使用 MATLAB 编程,循环求解过程采用 Newton 迭代法计算,最大容许误差为 10⁻³,可得到连杆末端轨迹如图2,连杆末端起始位置用圆形符号表示,终止位置用星形表示. 图3为连杆末端 xOy 坐标的时间历程图,图4为系统总能量、动能、势能时间历程图,图5为约 束函数、速度级约束、加速度级约束时间历程图.

Fig. 3 Time histories of xOy coordinates at the connecting rod end

Fig. 4 Total energy, kinetic energy, potential energy time histories of the system

从图 2~5 可以看出,本文给出的 L-稳定方法在仿真过程中能够保持较好的稳定性,总能 量误差和各级约束误差均较小,适用于多体系统动力学仿真.下面分不同情况对该方法进行数 值验证与比较.

1) 仿真时间为*t* = 10 s,每个时间区间上取相同等距节点数(*r* = 4),对不同步长结果进行 比较,见表 1.可以看出,随着步长减小,程序运行所花费的时间增大,最大能量误差 |*H*|_{max} 减

Fig. 5 Time histories of constraint functions and speed-level and acceleration-level constraints

表 1	L-稳定方	法在不同步士	长卜的结果比较

Table 1 Results of the L-stable method with different steps

step	runtime T/s	$ H _{\max}$	constraint function ${\it \Phi}$	speed-level constraint $\boldsymbol{\varPhi}_{t}$	acceleration-level constraint $oldsymbol{\Phi}_u$
h = 0.01	5.890 6	7.000 7E-5	6.845 9E-7	3.748 OE-7	5.659 5E-12
h = 0.005	10.875 0	8.807 8E-7	1.915 4E-9	6.668 6E-9	1.984 6E-12
h = 0.001	42.640 6	5.507 4E-11	7.676 6E-13	4.180 OE-13	1.421 1E-13
	코 Table 2 F	長2 L-稳定方法在 Results of the L-stat	在不同节点数下的结果b ale method with different	七较 node numbers	
node number	runtime <i>T</i> /s	$\mid H \mid_{\max}$	constraint function ${I \!$	speed-level constraint $\boldsymbol{\varPhi}_t$	acceleration-level constraint ${oldsymbol{\varPhi}}_u$
<i>r</i> = 3	1.687 5	0.002 1	5.821 2E-5	3.926 7E-4	6.262 5E-12
r = 4	5.890 6	7.000 7E-5	6.845 9E-7	3.748 OE-7	5.659 5E-12
	表3 L-稳定方 Table 3 Compa with th	法与 Runge-Kutta rison between the I e same step (h =	法在相同步长下的结果 stable method and the F 0.01)	比较(h = 0.01) Runge-Kutta method	
	runtime T/s	$\mid H \mid_{\max}$	constraint function Φ	speed-level constraint Φ	acceleration-level

			Φ	constraint $\boldsymbol{\Psi}_{i}$	constraint $\boldsymbol{\Psi}_{tt}$
L-stable	5.890 6	7.000 7E-5	6.845 9E-7	3.748 OE-7	5.659 5E-12
Runge-Kutta	0.390 6	0.262 8	0.008 7	0.002 1	9.237 1E-14
 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1为 $t = 10$ s 固	1定步长 h = 0 0	每个时间区间	内冼择不同的等	

2) 仿真时间为t = 10 s, 固定步长 h = 0.01, 每个时间区间闪选择不同的等距卫点数进行比较(r = 3, 4), 见表 2.可以看出, 当r = 4 时, 虽然耗费时间增大, 但是最大能量误差、约束函数、

速度级约束和加速度级约束均小于 r = 3 时的结果,因此节点数增加可以提高精度.

3) 仿真时间为 *t* = 10 s, 步长 *h* = 0.01, *r* = 4 的 L-稳定方法与 Runge-Kutta 法结果比较见表 3.可以看出,用 L-稳定方法求解微分-代数方程,最大能量误差、约束函数和速度级约束,明显 要比 Runge-Kutta 法的小,虽然加速度级约束精度比 Runge-Kutta 法稍低,但是 L-稳定方法的总能量随时间增加而保持稳定状态,而 Runge-Kutta 法的总能量随时间一直在快速增加,如图 6、7 所示.

图 6 仿真时间 10 s 时 L-稳定方法与 Runge-Kutta 法 的系统总能量时间历程

图 7 仿真时间 100 s 时 L-稳定方法与 Runge-Kutta 法 的系统总能量时间历程

Fig. 7 Total energy time histories of the L-stable method and the Runge-Kutta method (t = 100 s)

speed-level

acceleration-level

4) 仿真时间为 t = 10 s, 步长 h = 0.01, 相同节点数(r = 4), 用 L-稳定方法对指标-1、-2、-3 的微分-代数方程组进行求解,结果比较见表 4.可以看出, L-稳定方法求解指标-1、-2、-3 的微 分-代数方程组所花费的时间相差不大,指标-1 和指标-2 的最大能量误差要比指标-3 小,指标-3 的约束函数误差最小,指标-2 的速度级约束误差最小,指标-1 的加速度级约束误差最小.综 合比较可知,指标-1 的整体精度较高.

表4 L-稳定方法求解指标-1、-2、-3 的微分-代数方程组结果比较

Table 4	Comparison o	f indices-1	,-2,-3	solutions to	differential-algebraic	equations	with the	L-stable	method
---------	--------------	-------------	--------	--------------	------------------------	-----------	----------	----------	--------

 $|\pi|$

constraint function

	runtime I / s	II _{max}	Φ	constraint Φ_t	constraint Φ_u
index-1	5.890 6	7.000 7E-5	6.845 9E-7	3.748 OE-7	5.659 5E-12
index-2	5.421 9	3.216 3E-5	4.394 9E-9	1.849 8E-14	0.070 4
index-3	5.609 4	0.001 1	2.664 5E-15	5.940 5E-4	0.985 4
Table	表 5 5 Comparison of	L-稳定方法取等的 the results from the	巨节点与非等距节点的约 L-stable method with uni	吉果比较 iform and non-uniform	n nodes
	runtime T/s	$\mid H \mid_{\max}$	constraint function \varPhi	speed-level constraint $\boldsymbol{\varPhi}_{t}$	acceleration-level constraint ${m arPsi}_{u}$
uniform nodes	5.609 4	0.001 1	2.775 6E-15	5.940 5E-4	0.985 4
Chebyshev nodes	5.218 8	4.324 5E-5	2.720 OE-15	1.809 4E-4	0.688 0
Legendre nodes	5.109 4	2.532 7E-4	2.886 6E-15	2.904 7E-4	0.756 0

5)相同步长下,指标-3的L-稳定方法选取等距节点与非等距节点比较.取步长 h = 0.01, 结果比较见表 5.可以看出,当L-稳定方法选择非等距节点时最大能量误差要小于取等距节点 时的能量误差,其中 Chebyshev 节点综合精度较高.

4 精度实验与分析

在时间区间 $t \in [0,1]$ 求解平面双连杆机械臂指标-3 的微分-代数方程,取 Runge-Kutta 法 $h = 0.000\ 001$ 时的结果作为近似精确解,计算出 L-稳定方法在 t = 1 s, r = 4 时 q 的整体误差和 步长的对数关系曲线,如图 8; q 各分量的整体误差和步长的对数关系曲线,如图 9、10.r = 3时,q 的整体误差和步长的对数关系曲线见图 11; q 各分量的整体误差和步长的对数关系曲线 见图 12、13.可见当 r = 4 时,L-稳定方法整体误差能够保证四阶精度, r = 3 时 L-稳定方法整体 误差能够保证二阶精度, r 越大精度越高.

5 结 论

本文构造了求解多体系统动力学微分-代数方程的 L-稳定方法,数值结果表明,L-稳定方 法在相同节点数情况下,步长越小精度越高;步长固定时,节点数越多精度越高;Chebyshev 节 点和 Legendre 节点结果精度高于等距节点.与经典 Runge-Kutta 法相比较,L-稳定方法数值精 度更高,约束违约现象减弱,长时间仿真情况下总能量保持效果更好.该方法数学原理简单、使 用方便、编出的程序通用性好,易在计算机中实施,值得研究和推广.如何在保证数值精度的情 况下提高计算效率,将是今后需要继续研究的内容.

参考文献(References):

- [1] DAHLQUIST G. A special stability problem for linear multistep methods [J]. BIT Numerical Mathematics, 1963, 3(1): 27-43.
- [2] WIDLUND O B. A note on unconditionally stable linear multistep methods [J]. BIT Numerical Mathematics, 1967, 7(1): 65-70.
- [3] GEAR C W. The Automatic Integration of Stiff Ordinary Differential Equations [M]. Amsterdam: North Holland Publishing Company, 1963.
- [4] DAHLQUIST G. Error Analysis for a Class of Methods for Stiff Non-Linear Initial Value Problems [M]. Berlin: Springer-Verlag, 1975.
- [5] BUTCHER J C. A stability property of implicity Runge-Kutta methods [J]. BIT Numerical Mathematics, 1975, 15(4): 358-361.
- [6] BURRAGE K, BUTCHER J C. Stability criteria for implicit Runge-Kutta methods [J]. SIAM Journal on Numerical Analysis, 1979, 16(1): 46-57.
- [7] LI S F. Nonlinear stability of general linear methods [J]. Journal of Computational Mathematics, 1991, 9(2): 97-104.
- [8] EHLE B L. A-stable methods and Pade approximations to the exponential [J]. *SIAM Journal on Mathematical Analysis*, 1973, **4**(4): 671-680.
- [9] HAIRER E, WANNER G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems [M]. 2nd ed. Beijing: Science Press, 2006.

- [10] 邓子辰,李庆军. 精细指数积分法在卫星编队飞行动力学中的应用[J]. 北京大学学报(自然科学版), 2016, 52(4): 669-675.(DENG Zichen, LI Qingjun. Precise exponential integrator and its application in dynamics of spacecraft formation flying[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(4): 669-675.(in Chinese))
- [11] 彭海军,李飞,高强,等. 多体系统轨迹跟踪的瞬时最优控制保辛方法[J]. 力学学报, 2016, 48
 (4): 784-791.(PENG Haijun, LI Fei, GAO Qiang, et al. Symplectic method for instantaneous optimal control of multibody system trajectory tracking[J]. *Chinese Journal of Theoretical and Applied Mechanics*, 2016, 48(4): 784-791.(in Chinese))
- [12] 阚子云,彭海军,陈飙松,等.开放式多体系统动力学仿真算法软件研发(Ⅱ):DAEs 求解算法 对比[J]. 计算力学学报,2015,32(6):707-715.(KAN Ziyun, PENG Haijun, CHEN Biaosong, et al. Study of open simulation algorithm software for multibody system dynamics (Ⅱ): comparison of algorithms for solving DAEs[J]. *Chinese Journal of Computational Mechanics*, 2015, 32(6): 707-715.(in Chinese))
- [13] 丁洁玉,潘振宽. 多体系统动力学微分-代数方程广义-α投影法[J]. 工程力学, 2013, 30(4): 380-384.(DING Jieyu, PAN Zhenkuan. Generalized-α projection method for differential-algebraic equations of multibody dynamics[J]. *Engineering Mechanics*, 2013, 30(4): 380-384. (in Chinese))
- [14] 徐方暖,王博,邓子辰,等. 基于四元数方法的绳系机器人姿态控制[J]. 应用数学和力学, 2017, 38(12):1309-1318.(XU Fangnuan, WANG Bo, DENG Zichen, et al. Attitude control of targets captured by tethered space robots based on the quaternion theory[J]. Applied Mathematics and Mechanics, 2017, 38(12):1309-1318.(in Chinese))
- [15] 文立平,杨春花,文海洋. 非线性泛函积分微分方程多步 Runge-Kutta 方法的稳定性和渐近稳定性[J]. 湘潭大学自然科学学报, 2018, 40(1): 1-5.(WEN Liping, YANG Chunhua, WEN Haiyang. Stability and asymptotic stability of multistep Runge-Kutta methods for nonlinear functional-integro-differential equations [J]. *Natural Science Journal of Xiangtan University*, 2018, 40(1): 1-5.(in Chinese))
- [16] SHAMPINE L F, WATTS H A. A-stable block implicit one-step methods [J]. BIT Numerical Mathematics, 1972, 12(2): 252-266.
- [17] 袁兆鼎,费景高,刘德贵. 刚性常微分方程初值问题的数值解法[M]. 北京:科学出版社, 2016.
 (YUAN Zhaoding, FEI Jinggao, LIU Degui. Numerical Solution of Initial Value Problems for Stiff Ordinary Differential Equations[M]. Beijing: Science Press, 2016.(in Chinese))

An L-Stable Method for Differential-Algebraic Equations of Multibody System Dynamics

LI Bowen¹, DING Jieyu^{1,2}, LI Yanan¹

(1. School of Mathematics and Statistics, Qingdao University, Qingdao, Shandong 266071, P.R.China;

2. Center for Computational Mechanics and Engineering Simulation,

Qingdao University, Qingdao, Shandong 266071, P.R.China)

Abstract: An L-stable method over time intervals for differential-algebraic equations of multibody system dynamics was presented. The solution scheme was established based on equidistant nodes and non-equidistant nodes such as Chebyshev and Legendre nodes. According to Ehle's theorem and conjecture, the unknown matrix and vector in the L-stable solution formula were obtained through comparison with the Padé approximation. The Newtonian iteration method was used during the solution process. The planar 2-link manipulator system was taken as an example, and the results from the L-stable method were compared for different node numbers in the time interval and different steps in the simulation, with those from the classic Runge-Kutta method. The comparison shows that, the proposed method has the advantages of good stability and high precision, and is suitable for multibody system dynamics simulation under longterm conditions.

Key words: multibody system dynamics; L-stable method; differential-algebraic equation; Padé approximation; stability

Foundation item: The National Natural Science Foundation of China(11472143;11772166)

引用本文/Cite this paper:

李博文,丁洁玉,李亚男.多体系统动力学微分-代数方程 L-稳定方法[J].应用数学和力学,2019,40 (7);768-779.

LI Bowen, DING Jieyu, LI Yanan. An L-stable method for differential-algebraic equations of multibody system dynamics [J]. *Applied Mathematics and Mechanics*, 2019, **40**(7): 768-779.