

杂质气体0,对ZrCo合金吸附性能影响机理的第一性原理研究

赵世祥,曾祥国,王云天,严义刚

First Principle Study on the Influence Mechanism of Impurity Gas O2 on the Adsorption Properties of Alloy ZrCo

ZHAO Shixiang, ZENG Xiangguo, WANG Yuntian, and YAN Yigang

在线阅读 View online: https://doi.org/10.21656/1000-0887.430299

您可能感兴趣的其他文章

Articles you may be interested in

圆形杂质对裂纹扩展的影响

Effects of Circular Inhomogeneity on Crack Propagation 应用数学和力学. 2019, 40(2): 189-199 https://doi.org/10.21656/1000-0887.390136

脑内各向异性扩散传质与吸附反应过程数值分析

Numerical Analysis of Anisotropic Mass Diffusion, Adsorption and Chemical Reaction Processes in Brain Tissues 应用数学和力学. 2017, 38(10): 1112–1119 https://doi.org/10.21656/1000-0887.370322

势阱深度对双稳态电磁发电系统发电性能的影响研究

Influence of Potential Well Depth on Power Generation Performance of Bistable Electromagnetic Energy Harvesting Systems 应用数学和力学. 2017, 38(6): 622-632 https://doi.org/10.21656/1000-0887.370246

气泡间距对受污染球形气泡界面性质和尾流的影响

Effects of Bubble Spacings on Interface Properties and Wake Flow for 2 Contaminated Spherical Bubbles 应用数学和力学. 2020, 41(10): 1157–1170 https://doi.org/10.21656/1000-0887.410099

镁合金变化阻尼特性及其动力学分析方法

Variable Damping Characteristics and a Dynamic Analysis Method for Magnesium Alloy 应用数学和力学. 2020, 41(12): 1297–1310 https://doi.org/10.21656/1000-0887.410144

一类Fermi气体光晶格非线性机制的轨线研究

Study on Path Curves of a Class of Fermi Gases in Optical Lattices With Nonlinear Mechanism 应用数学和力学. 2017, 38(4): 477–485 https://doi.org/10.21656/1000-0887.370046

关注微信公众号,获得更多资讯信息

ⓒ应用数学和力学编委会, ISSN 1000-0887

http://www.applmathmech.cn

杂质气体 O₂ 对 ZrCo 合金吸附性能影响机理的 第一性原理研究^{*}

赵世祥1, 曾祥国1, 王云天2, 严义刚3

(1.四川大学建筑与环境学院深地科学与工程教育部重点实验室,成都 610065;
2.成都职业技术学院城市建设学院,成都 610041;
3.四川大学新能源与低碳技术研究院,成都 610065)

摘要: 杂质气体在 ZrCo 合金表面的吸附行为对其储氢性能具有重要的影响.采用基于赝势平面波法的第一性原理 对空气中的 O₂ 在 ZrCo(110) 表面的吸附行为进行了研究.对 O₂ 在合金表面所有稳定吸附构型进行吸附能分析以及 电荷分析的结果表明: O₂ 吸附的最稳定构型为 B3(Zr—Co 桥位),在该位点的吸附能为-8.124 eV.该构型的态密度 和差分电荷密度的结果表明: O₂ 在 ZrCo(110) 表面该位点的吸附属于强化学吸附,O—O 键发生断裂.O 原子与 ZrCo(110) 表面原子的成键本质为 O 原子的电子和周围表面原子的电子发生电子轨道重叠,即 O 原子的 2s、2p 轨 道电子与表面的 Zr 原子的 4p、4d 轨道电子和 Co 原子的 3d 轨道电子发生了电子轨道重叠,出现了轨道杂化现 象.研究结果对后续揭示 ZrCo 合金储氢材料在杂质气体中的毒化机制具有积极作用.

关 键 词: ZrCo 合金; 杂质气体 O₂; 吸附性能; 影响机理; 第一性原理 **中图分类号:** TG139 **文献标志码:** A DOI: 10.21656/1000-0887.430299

First Principle Study on the Influence Mechanism of Impurity Gas O₂ on the Adsorption Properties of Alloy ZrCo

ZHAO Shixiang¹, ZENG Xiangguo¹, WANG Yuntian², YAN Yigang³

(1. Key Laboratory of Deep Earth Science and Engineering, Ministry of Education,

College of Architecture & Environment, Sichuan University, Chengdu 610065, P.R.China;

2. School of Urban Construction, Chengdu Polytechnic, Chengdu 610041, P.R.China;

3. Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P.R.China)

Abstract: The adsorption behavior of impurity gases on the surface of alloy ZrCo has an important influence on its hydrogen storage performance. The adsorption behavior of O_2 on the ZrCo(110) surface was investigated with the first principles based on the pseudopotential plane wave method. The results of adsorption energy and charge analysis show that, the most stable geometry configuration was B3 (the Zr—Co bridge site) where the adsorption energy was -8.124 eV. The analysis of the density of states and the differential charge density show that, the adsorption behavior of O_2 on the ZrCo(110) surface is a strong chemical adsorption, where the oxygen-oxygen bond breaks. The essence of bonding between

^{*} 收稿日期: 2022-09-29;修订日期: 2022-12-31

基金项目: 国家自然科学基金委员会-中国工程物理研究院联合重点基金 (U2130208)

作者简介: 赵世祥(1998—), 男, 硕士生(E-mail: 2535923915@qq.com);

曾祥国(1960—), 男, 教授, 博士(通讯作者. E-mail: xiangguozeng@scu.edu.cn).

引用格式: 赵世祥,曾祥国,王云天,严义刚.杂质气体 O₂ 对 ZrCo 合金吸附性能影响机理的第一性原理研究[J].应用 数学和力学, 2023, 44(2): 152-159.

atom O and the ZrCo(110) surface atom is that the electron orbit of atom O overlaps with the electron orbit of the surface atom, i.e. the 2s and 2p orbital electrons of atom O overlapped with the 4p and 4d orbital electrons of atom Zr and the 3d orbital electrons of atom Co on the surface. The research results make senses in revealing the poisoning mechanism of alloy ZrCo in impurity gases.

Key words: alloy ZrCo; impurity gas O₂; adsorption property; influence mechanism; first principle

0 引 言

氢能是一种可以用于替代传统燃料^[1]的清洁能源.然而在一般的能源开发过程中会出现一系列问题,如 储存时的传质传热问题,减振问题和能量采集问题^[2-3].因此,如何实现储氢是需要攻克的难关.固态储氢材料 在储存氢及其同位素的应用中极为广泛,同气态和液态储存材料相比,固态储氢材料有着更好的安全性、良好 的可靠性和更低的成本^[4-6].近年来,ZrCo合金由于高储氢容量和无放射性等优点,在氢同位素气体的储存和 回收方面有着重要的应用前景,并且已经成为国际热核实验反应堆 (ITER) 中快速储存和补充氢同位素的一 种重要候选材料^[7].

然而,由于 ZrCo 合金的固有属性,该材料的进一步应用受到了很大限制,在高温氢压的环境下会发生 氢致歧化效应,进而造成其储氢能力的大幅下降.对于如何提高 ZrCo 合金的储氢性能,国内外许多学 者^[8-12]已经做了大量的工作并取得了很多有益的成果.Yao 等^[9]系统地研究了 Nb 掺杂前后 ZrCo 储氢能力的 变化.研究结果得出,在 350 ℃下,Zr_{0.8}Nb_{0.2}Co 的初始活化时间大大缩短,氢脱附平衡压力增大,此外,抗歧化 能力得到很大提高.Kou 等^[10]利用金属储氢床研究了 ZrCo、Zr_{0.8}Ti_{0.2}Co 和 Zr_{0.8}Hf_{0.2}Co的储氢性能.结果表明, Hf 和 Ti 掺杂均提升了合金的储氢和抗歧化能力.

储存和输送系统 (SDS) 是 ITER 项目燃料循环系统的主要组成部分之一,主要用于储存和输送氢同 位素^[13].在储氢和输氢循环系统以及回收系统的气体中会无法避免地含有如 He、N₂、O₂、CO 等多种杂质气 体^[14],而由于与氢及其同位素相比而言,杂质气体更容易与 ZrCo 合金反应,不仅会占据吸附位点,还会形成致 密钝化层,从而阻碍氢及其同位素与 ZrCo 合金之间的反应,进而导致其储氢能力的显著降低.

综上可以看出,虽然在改善 ZrCo 合金氢致歧化效应的研究方面获得了显著的进展,并且在杂质气体对储 氢合金毒化的研究也取得了大量结果.然而,目前对 ZrCo 储氢合金在杂质气体下吸附方面的理论研究还比较 少.因此,本文针对在储氢领域极具潜力的 ZrCo 合金材料,开展了以 O₂ 为代表的杂质气体在 ZrCo 合金表面 吸附行为机理的研究.

1 计算模型与方法

本文通过基于密度泛函理论的 Cambridge Serial Total Energy Package (CASTEP) 程序计算电子结构的总 能量.在计算中,使用超软赝势 (OTFG ultrasoft) 作为平面波基组来描述离子与价电子之间的相互作用势,其在 解决单电子 Schrödinger (Kohn-Sham) 方程和描述电子与电子之间的相互作用势方面具有明显的优势^[15].此 外,采用以 PBE 泛函表示的广义梯度近似 (GGA) 方法^[16] 描述电子间的相互作用.在进行结构优化前对截断能 进行了收敛性计算,确定平面波截断能 *E*_{cut} 值为 400 eV.选用 Broyden-Fletcher-Goldfarb-Shanno (BFGS) 方法 对晶胞和表面结构进行几何优化来获得最稳定结构.在对晶胞构型优化计算时 *k*-points 设置为 8 × 8 × 8, 对吸 附构型优化计算时 *k*-points 设置为 8 × 6 × 2.体系总能量收敛值设为 1 × 10⁻⁵ eV/atom, 原子之间的相互作用力 收敛值设为 0.03 eV/Å, 晶体内应力收敛标准设为 0.05 GPa, 原子最大位移收敛值为 0.001 Å.

ZrCo 晶体为体心立方结构,优化后所得到的晶格常数为 *a* = *b* = *c* = 3.181 Å, *α* = *β* = *γ* = 90°, 与计算结果^[17] 和实验值^[18] 均吻合良好,如表 1 所示,说明设定参数均合理可靠.单胞优化结果如图 1(a) 所示.为确保表面之间没有明显的相互作用,计算了表面能.根据计算,当表面为 4 层时,表面能为 1.63 J/m².当表面结构从 4 层到 6 层时,表面能仅降低了 0.94%,这表明 4 层足够好.对优化好的单胞进行切面,构建 4 层原子层的切面模型,再将切面模型扩胞成 3 × 2 超晶胞模型,用该超晶胞模型来模拟 ZrCo(110) 表面.在弛豫过程中,允许上面的 2 层原子完全弛豫,下面的 2 层原子被固定.为避免相邻表面间的相互作用,用 15 Å的真空层隔开,表面模型

如图 1(b) 所示.

Table 1 Experimental and calculated lattice parameters for the ZrCo		
methods	a/Å	
calculation ^[17]	3.180	
experiment ^[18]	3.196	
this work	3.181	

表 1 ZrCo 晶格常数

图 1 ZrCo 晶胞及表面模型 Fig. 1 The unit cell structure of ZrCo and the ZrCo(110) surface model ネーロ 会社 まさかれ こ回声 にま に同

注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

在构建吸附模型时,首先对 ZrCo(110) 表面结构进行优化,再将 O₂ 分子放置于已经优化成功的表面结构 上.O₂ 分子分别置于各个模型表面的顶位、心位和桥位.吸附方向考虑垂直于 ZrCo(110)的表面. O₂ 在 ZrCo(110) 表面的初始吸附构型有 7 种 (图 2).有两种顶位分别在 Zr(T1)和 Co(T2) 原子顶部;有两种心 位分别为两个 Zr 和一个 Co 原子 (H1) 以及两个 Co 和一个 Zr 原子 (H2);有三种桥位分别为两个 Zr 原子 (B1),两个 Co 原子 (B2),一个 Zr 和一个 Co 原子 (B3).

2 计算结果与讨论

2.1 ZrCo(110) 表面形态

我们对 ZrCo(110) 表面结构进行优化, 在结构优化后, 发现表面原子坐标存在明显变化, 然而这些变化并没有造成严重的表面变形.表 2 列出了 ZrCo(110) 表面 Zr 和 Co 原子的 z 坐标及在其弛豫后的差异, 括号中的 1 和 2 表示第一层和第二层. 根据表 2, 我们发现除松弛后的第一层的 Co 原子外, 所有原子坐标均增加, 这与计算结果一致^[19]. 优化后, 表面变得粗糙, 这也是 ZrCo 表面易被杂质气体吸附的原因.

Table 2 The z coordinates of Zr and Co atoms after relaxation for ZrCo(110) (unit: Å)				
layer	before relaxation	after relaxation	difference of z coordinate after relaxation	
Co (1)	6.748	6.479	-0.269	
Zr (1)	6.748	6.805	0.057	
Co (2)	4.498	4.603	0.105	
Zr (2)	4.498	4.504	0.006	

表 2 Zr 和 Co 原子弛豫前后的 z 坐标(单位: Å)

2.2 吸附构型与吸附能

分别对 O₂ 在 ZrCo(110) 表面的 7 种吸附构型进行几何优化,并通过对吸附能的计算来判断该构型能否 稳定.优化后的稳定吸附构型如图 3 所示.

O2 在 ZrCo(110) 表面的吸附能计算式为

$$E_{\rm ads} = E_{\rm sur+O_2} - E_{\rm sur} - E_{\rm O_2}$$

(1)

式中, *E*_{sur}为吸附前合金表面晶胞的总能量, *E*_{sur+O2}为 O₂ 吸附在合金表面后超晶胞的总能量, *E*_{O2}为 O₂ 分子的 能量. 相关能量计算结果如表 3 所示. 表 3 中, *d*₀ 表示两 O 原子的间隔距离, 其中靠近表面的 O 原子记为 O1, 远离表面的记为 O2, *d*₁ 为 O1 原子与表面 Zr 和 Co 原子之间成键的键长, *d*₂ 为 O2 原子与表面 Zr 和 Co 原子 之间成键的键长, *E*_{ads} 表示吸附能.

Fig. 3 The optimized stable adsorption of O_2 on the ZrCo(110) surface

结合图 3 和表 3 进行分析可以得知, O₂ 在 ZrCo(110) 表面的 7 种构型均可稳定存在, O₂ 在 T2、H1、H2、B2 和 B3 位置吸附以后, O₂ 分子发生解离, 之后 O—O 断裂变成两个 O 原子, O1 和 O2 原子均与邻近 Zr 和 Co 原子形成成键.在 T1 位置吸附后, O₂ 键长增加了 0.074 Å, 在 B1 位置吸附后, O₂ 键长增加了 0.134 Å, 在这 两种吸附情况下 O₂ 分子中键没有发生断裂.通过对比分析所有构型成功优化后的吸附能和 O—O 键长的变 化可得, B3 吸附构型释放的能量最多, 最为稳定, 吸附能 E_{ads} 为-8.124 eV, 同时对应于最大 O—O 距离.相反, 对应于最大吸附能-0.027 eV 的 T1 位置有着最短的 O—O 距离.

2.3 电荷分布

在金属材料表面分子和原子发生吸附反应的同时一定会伴随着表面电荷的转移^[20].表4的结果为吸附后 O1和O2原子含有的净电荷值.由表4可知,吸附后,两个O原子均得到电荷,这意味着 ZrCo(110)表面的 Zr和Co原子对O2分子中的O原子进行了电荷的转移.O2分子的7种吸附构型中,电荷的转移量从大到小分别为:桥位、心位、顶位.同时结合表3的结果可以发现,表面原子电荷交换量越大,吸附能绝对值也越大,吸附也就更加稳定.B3作为最稳定的吸附构型,表面原子转移的电荷量也是最大;而T1和B1构型的吸附能 最小,同时电荷转移量也是最小.

model	d_0 /Å	chemical bond 1	$d_1/\text{\AA}$	chemical bond 2	$d_2/\text{\AA}$	E_{ads}/eV	
T1	1.309	O1—Zr20	1.918			-0.027	
		O1—Co16	1.879	O2—Co24	1.924		
T2 3.4	0.450	O1—Co20	1.935	O2—Co20	1.929		
	3.472	O1—Zr20	2.216	O2—Zr12	2.193	-5./86	
		O1—Zr8	2.218	O2—Zr24	2.197		
		O1—Co20	1.835	O2—Co8	1.836		
H1	2.456	O1—Zr20	2.100	O2—Zr20	2.099	-6.782	
		O1—Zr24	2.100	O2—Zr24	2.099		
		O1—Co20	1.969	O2—Zr20	1.771		
		O1—Co16	1.969	-	-		
H2	3.203	O1—Zr8	2.206	-	-	-5.406	
		O1—Zr20	2.231	-	-		
		O1—Zr19	2.238	-	-		
B1 1.36	1 260	O1—Zr24	2.097	-	-	-0.513	
	BI	1.509	O1—Zr20	2.098	-	-	-0.512
		O1—Co20	1.958	O2—Zr20	2.028		
		O1—Co16	1.959	O2—Zr8	2.030		
B2	2.435	O1—Zr20	2.024	-	-	-3.789	
		O1—Zr8	2.033	-	-		
		O1—Zr19	2.042	-	-		
		O1—Co20	1.952	O2—Co4	1.955		
В3	3.724	O1—Zr20	2.041	O2—Zr16	2.039	-8.124	
		O1—Zr24	2.046	O2—Zr20	2.046		

表 3 O₂ 在 ZrCo(110) 表面稳定吸附构型的结构参数和吸附能

表4 O 原子吸附后的净电荷分布

Table 4	The net charge	distribution	of O1	and O2 i	n each structure
1 auto 4	The net charge	uisuiouuon	01 01		ii cacii structure

model	O1	02	$Q_{ m total}$
T1	-0.27	-0.30	-0.57
T2	-0.68	-0.68	-1.36
H1	-0.65	-0.65	-1.3
H2	-0.70	-0.55	-1.25
B1	-0.39	-0.39	-0.78
B2	-0.63	-0.69	-1.32
В3	-0.68	-0.69	-1.37

2.4 电子态密度

态密度是单位能量和量子态数量之间的电子可能状态的指标,它是研究原子结合和材料特性的一个关键 参数^[21].对态密度进行分析,能够更好地知道表面原子之间的作用本质.我们计算了 ZrCo(110) 表面在吸附 O₂前后的总态密度和分波态密度,如图 4~6 所示,图中虚线表示 Fermi 能级 *E*_f.

图 4 是 O₂ 分别吸附于 B3 和 T1 位点的总态密度图,可以发现吸附于 T1 位点后的态密度在低能量区多 出了两个微弱的态密度峰 (-25~-22 eV、-15~-13 eV),这可能是吸附于 T1 位点的 O₂ 此时还未解离所引起 的.而在其他区域态密度的差距较小.

一般情况下,能带中主态密度峰的位置与晶体的稳定性有关,所处位置的能量越高,稳定性反而越 差^[22].对 B3 和 T1 态密度靠近 Fermi 能级的主态密度峰进行分析,图 5 为局部放大图.可以看到,O₂ 吸附 B3 位置后相较于 T1 位置而言,态密度峰向左移动,即向低能区移动,晶体的稳定性也更高,并且该分析结果 与前面吸附能以及电荷分析的结果也相符合.

图 4 O₂ 在 ZrCo(110) B3 和 T1 吸附位置的态密度 Fig. 4 The density of states of the ZrCo(110) surface after adsorption of O₂ at B3 and T1

图 5 O₂在 ZrCo(110) B3 和 T1 吸附后的 Fermi 能级附近的主态密度峰
 Fig. 5 Dominant DOS peaks near the Fermi level after adsorption of O₂ at B3 and T1

从图 6 中可以看出, 纯净 ZrCo(110) 表面电子态密度主要集中于-50~-47 eV, -28~-25 eV 和-8~18 eV 这 3 个能量区间.虽然总态密度能够确定电子作用的能量范围, 但是仍然需要计算不同原子的分波态密度从 而来确定各个能量范围类原子的贡献, 在计算中所涉及到的孤立原子的外层电子结构包括 Zr 4s²4p⁶4d²5s²、Co 3d⁷4s²、O 2s²2p⁴.在纯净 ZrCo(110) 表面上, 在低能量区尤其是低于-20 eV 以下区域的能量主要来源于 Zr 原 子的贡献, 在能量范围-50~-47 eV 内的电子主要来源于 Zr 原子的 s 轨道, 在能量范围-28~-25 eV 内的电子主要源于 Zr 原子的 p 轨道, 然而对于在能量范围-8~18 eV 内的电子来源比较复杂, 主要是因为 Zr 原子的 4d 轨道和 Co 原子的 4d 轨道, 以及少量 Zr 原子的 4s、4p 轨道和 Co 原子的 4s 轨道贡献, 在 Fermi 能级附近 原子轨道发生了重叠, 并且出现了轨道杂化现象从而使得 Co 原子出现了 p 层电子, 与之前的计算结果相一致^[23].

图 6 O₂ 在 ZrCo(110) B3 吸附位置的态密度: (a) 吸附前; (b) 吸附后 Fig. 6 The density of states of the ZrCo(110) surface of O₂: (a) before adsorption; (b) after adsorption

O₂ 在表面吸附后,最稳定的吸附结构 (B3) 与纯净 ZrCo(110) 表面相比,多出一个态密度峰 (-20 ~ -18 eV).其总态密度和分波态密度图如图 6 所示.在-18 eV 以下的低能区主要来自于 Zr 原子的 s 和 p 轨道, 以及 O 原子的 s 轨道的贡献,同时 Zr 原子的 p 轨道能量的峰值略有减小,在 B3 构型中,O 的 s 轨道与 Zr 的

p轨道有着较为微弱的轨道杂化作用,O的p轨道与Zr的d和Co的d轨道有着较强的杂化作用.

2.5 差分电荷密度

此外,我们还计算了材料的差分电荷密度,O₂的最稳定构型 B3(图 7)中,O₂主要与表层的相邻近的 Zr和Co原子相互作用.其中蓝色代表电荷密度在此处增加,黄色代表电荷密度在此处减少.在B3构型中,两 个O原子从优化前的桥位转移到两个心位,对比分析OI和O2原子的成键可以得出,与这两个O原子分别 邻近的三个表面原子都出现了电荷密度的减少,而O原子附近则出现了电荷密度的增加.可以发现,在O原 子附近的电荷密度的增加量明显超过电荷密度的减少量,这就表明附近的Zr和Co原子的电荷向O原子发 生了转移,而且因为在2个O原子之间的区域电荷密度是减少的,O—O键完全断裂.而在T1位置(图 8)处, 可以看出在靠近O附近的局部区域,依然出现了电荷密度增加的情况,但与B3相比增加程度相当有限,并且 O—O键区域的电荷密度也相应减小,说明键的强度被削弱.

图 7 O₂ 在 B3 吸附的差分电荷密度图: (a) 侧视图; (b) 俯视图 Fig. 7 The differential charge density of O₂ adsorption at B3 on the ZrCo(110) surface: (a) the side view; (b) the top view

图 8 O₂ 在 T1 吸附的差分电荷密度图: (a) 侧视图; (b) 俯视图 Fig. 8 The differential charge density of O₂ adsorption at T1 on the ZrCo(110) surface: (a) the side view; (b) the top view

3 结 论

本文通过第一性原理的方法对 O₂ 分子在 ZrCo(110) 表面的吸附进行了系统研究.研究中提到的细节为深 入了解 ZrCo 合金在 O₂ 环境下储氢性能的变化提供了基础,可为后续设计基于 ZrCo 的储氢材料提供一定的 帮助,并有助于解决 ZrCo 材料在杂质气体中吸氢性能下降的问题.计算结果表明:

1) O₂ 分子在 ZrCo(110) 表面的 T1 和 B1 位置为分子吸附,其他位置为化学吸附.总体而言,在所有吸附 构型中稳定性的顺序为桥位、心位、顶位,最稳定吸附构型为 B3 构型.

2)吸附能、O—O距离和电子转移量之间存在关系.B3构型最小吸附能为-8.124 eV,对应于最大的 O—O键长度和最大电子转移量,而T1构型最大吸附能为-0.027 eV,对应于最短的O—O键长度和最小电子转移量.

3) 电荷分析的结果可以发现, O₂分子在表面吸附后得到了电子, ZrCo(110) 表面原子丢失电子.其次 O₂ 吸附后分子键断裂, 主要原因为 O 原子的 2s 和 2p 轨道与表面的 Zr 原子的 4p、4d 轨道和 Co 原子的 3d 轨 道发生了重叠杂化作用.

参考文献(References):

- [1] REN J W, MUSYOKA N M, LANGMI H W, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review[J]. *International Journal of Hydrogen Energy*, 2017, 42(1): 289-311.
- [2] 高伟业,张赛,张杰,等. 含湿相变粗糙多孔材质的热质耦合分形研究[J]. 应用数学和力学, 2022, 43(5): 561-568.
 (GAO Weiye, ZHANG Sai, ZHANG Jie, et al. Thermo-mass coupling fractal study of wet phase-change rough porous materials[J]. *Applied Mathematics and Mechanics*, 2022, 43(5): 561-568.(in Chinese))

- [3] 董彦辰, 张业伟, 陈立群. 惯容器非线性减振与能量采集一体化模型动力学分析[J]. 应用数学和力学, 2019, 40(9): 968-979. (DONG Yanchen, ZHANG Yewei, CHEN Liqun. Dynamic analysis of the nonlinear vibration absorber-energy harvester integration model with inerters[J]. Applied Mathematics and Mechanics, 2019, 40(9): 968-979. (in Chinese))
- [4] ZHANG F, ZHAO P C, NIU M, et al. The survey of key technologies in hydrogen energy storage[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14535-14552.
- [5] RAJAURA R S, SRIVASTAVA S, SHARMA P K, et al. Structural and surface modification of carbon nanotubes for enhanced hydrogen storage density [J]. Nano-Structures & Nano-Objects, 2018, 14: 57-65.
- [6] KOJIMA Y. Hydrogen storage materials for hydrogen and energy carriers[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18179-18192.
- [7] WANG F, LI R F, DING C P, et al. Recent progress on the hydrogen storage properties of ZrCo-based alloys applied in international thermonuclear experimental reactor (ITER)[J]. Progress in Natural Science: Materials International, 2017, 27(1): 58-65.
- [8] LIANG Z Q, XIAO X Z, YAO Z D, et al. A new strategy for remarkably improving anti-disproportionation performance and cycling stabilities of ZrCo-based hydrogen isotope storage alloys by Cu substitution and controlling cutoff desorption pressure[J]. *International Journal of Hydrogen Energy*, 2019, 44(52): 28242-28251.
- [9] YAO Z D, XIAO X Z, LIANG Z Q, et al. Improvement on the kinetic and thermodynamic characteristics of Zr_{1-x}Nb_xCo (x = 0~0.2) alloys for hydrogen isotope storage and delivery[J]. Journal of Alloys and Compounds, 2019, 784: 1062-1070.
- [10] KOU H Q, SANG G, LUO W H, et al. Comparative study of full-scale thin double-layered annulus beds loaded with ZrCo, Zr_{0.8}Hf_{0.2}Co and Zr_{0.8}Ti_{0.2}Co for recovery and delivery of hydrogen isotopes[J]. *International Journal* of Hydrogen Energy, 2015, 40(34): 10923-10933.
- [11] ZHAO Y M, LI R F, TANG R H, et al. Effect of Ti substitution on hydrogen storage properties of $Zr_{1-x}Ti_xCo$ (x = 0, 0.1, 0.2, 0.3) alloys[J]. Journal of Energy Chemistry, 2014, 23(1): 9-14.
- [12] WENG C C, XIAO X Z, HUANG X, et al. Effect of Mn substitution for Co on the structural, kinetic, and thermodynamic characteristics of $\operatorname{ZrCo}_{1-x}\operatorname{Mn}_x(x=0\sim0.1)$ alloys for tritium storage[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28498-28506.
- [13] GLUGLA M, LÄSSER R, DÖRR L, et al. The inner deuterium/tritium fuel cycle of ITER[J]. Fusion Energy and Design, 2003, 69: 39-43.
- [14] ZHANG G H, TANG T, SANG G, et al. Effect of Ti modification on hydrogenation properties of ZrCo in the presence of CO contaminant gas[J]. Rare Metal Materials and Engineering, 2017, 46(11): 3366-3373.
- [15] GARRITY K F, BENNETT J W, RABE K M, et al. Pseudopotentials for high-throughput DFT calculations[J]. Computational Materials Science, 2014, 81: 446-452.
- [16] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. *Physical Review Letters*, 1996, 77(18): 3865-3868.
- [17] CHATTARAJ D, PARIDA S C, DASH S, et al. Structural, electronic and thermodynamic properties of ZrCo and ZrCoH₃: a first-principles study[J]. International Journal of Hydrogen Energy, 2012, 37(24): 18952-18958.
- [18] GACHON J C, SELHAOUI N, ABA B, et al. Comparison between measured and predicted enthalpies of formation[J]. Journal of Phase Equilibria, 1992, 13: 506-511.
- [19] WANG Q Q, KONG X G, YU Y, et al. Influence of the Fe-doping on hydrogen behavior on the ZrCo surface[J]. International Journal of Hydrogen Energy, 2021, 46(68): 33877-33888.
- [20] 蒙大桥, 罗文华, 李赣, 等. Pu(100)表面吸附CO₂的密度泛函研究[J]. 物理学报, 2009, **58**(12): 8224-8229. (MENG Daqiao, LUO Wenhua, LI Gan, et al. Density functional study of CO₂ adsorption on Pu(100) surface[J]. *Acta Physica Sinica*, 2009, **58**(12): 8224-8229. (in Chinese))
- [21] DEVILLERS M, SIRCH M, PENZHORN R D. Hydrogen-induced disproportionation of the intermetallic zirconium-cobalt compound ZrCo[J]. *Chemistry of Materials*, 1992, 4(3): 631-639.
- [22] CHEN Q, HUANG Z W, ZHAO Z D, et al. Thermal stabilities, elastic properties and electronic structures of B2-MgRe (Re=Sc, Y, La) by first-principles calculations[J]. *Computational Materials Science*, 2013, 67: 196-202.
- [23] WANG L S, DING J, HUANG X, et al. Influence of Ti/Hf doping on hydrogen storage performance and mechanical properties of ZrCo compounds: a first principle study[J]. *International Journal of Hydrogen Energy*, 2018, 43(29): 13328-13338.