N = ) % Applied Mathematics and Mechanics

45 %91 202449 H Vol.45,No.9, Sep. ,2024
© N FHBCE RS 292223, ISSN 1000-0887 http://www.applmathmech.cn

Schur EXEEM-BEDHE
é =

i

7

(bR RN AT BE, Jbat 101400 )
(KA pEZEERE)

WE: SRS R Schur JB UL AR 32 B PR 722 5 CRRR 5 € i Rl I AH OC ) BBl 22 0 O . JLAS 3RS
ik A (4N = 5033 843 TDM FIE #L-F5 243 NND) 8% $2 B F 4 M i AR Sl o i Jsy 3842 8l R T, B+
Schur JE A AFEARFRIZSRIANEME—PE, LK NND £ 280l e X, —LIRVE ) V2 E R I IEAEXTT 9T 1 iU 3 1% TAE
BT BRI ARG, I, & ALY Schur JE 2 F AR FEA B I RAR i M oo 4 5 1 ot LAt — PRl R in LA 25 1, e
— MR L AR IE R R R I DA — i ), — 42 NND FJLANSE NND DB ER-AE TERL A g A 1
e, HETRTE D LW T 52 AN SE 19 3 A ZE I SEBERN I, JL/AMR A SR BV, 40 NND 5 TDM 925 5 DL K &2 iy s
) NND Z [A] 4 S 22878 ILAh, 285 B BUK ARG B0 T SEA9 B Schur T8 2C K X R Y NND i 8 ] SCARAE{E
L, Ak HoA HMA Rt —25 T

X 8 : SchurJBx; IEMUERE; RN KRS FERIRG

RESES: 0302;035 XERFRRAD: A DOI: 10.21656/1000-0887.450129

Schur Forms and Normal-Nilpotent Decompositions

LI Zhen
( Beijing Institute of Mathematical Sciences and Applications, Beijing 101400, P.R.China )
(Recommended by WU Chuijie, M. AMM Editorial Board)

Abstract: Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community
recently, especially related to vortices and turbulence. Several decompositions of the velocity gradient tensor, such as the
triple decomposition of motion (TDM) and normal-nilpotent decomposition (NND), have been proposed to analyze the
local motions of fluid elements. However, due to the existence of different types and non-uniqueness of Schur forms, as
well as various possible definitions of NNDs, confusion has spread widely and is harming the research. This work aims to
clean up this confusion. To this end, the complex and real Schur forms are derived constructively from the very basics, with
special consideration for their non-uniqueness. Conditions of uniqueness are proposed. After a general discussion of
normality and nilpotency, a complex NND and several real NNDs as well as normal-nonnormal decompositions are
constructed, with a brief comparison of complex and real decompositions. Based on that, several confusing points are
clarified, such as the distinction between NND and TDM, and the intrinsic gap between complex and real NNDs. Besides,
the author proposes to extend the real block Schur form and its corresponding NNDs for the complex eigenvalue case to the

real eigenvalue case. But their justification is left to further investigations.

Key words: Schur form; normal matrix; nilpotent matrix; tensor decomposition; vortex identification

« Ui HEE: 2024-05-08; f&iTHHY: 2024-07-03
TEEB/T: 25 (1985—), J, 1d+: (E-mail: lizhen0102@bimsa.cn).
Sl AN 258, Schur B 5 IEM-FE L] . N HEEAF T2, 2024, 45(9): 1200-1211.
1200


mailto:lizhen0102@bimsa.cn

CACR Z5E: Schur B 5 IEM-E 0 1201

0 Introduction

In the thesis of Li"’, a normal-nilpotent decomposition (NND) of real square matrices is proposed and applied
to the velocity gradient tensor of a fluid element for analyzing vortex criteria (also see ref. [2]). The decomposition
can be stated as that every 3-by-3 real matrix is a sum of a normal matrix and a nilpotent matrix. As a special
application, the velocity gradient tensor A = Vv can be decomposed as

A=N+S, QD)
where N is a normal tensor and S is a nilpotent tensor. Then N can be further decomposed into three components
and results in a quadruple decomposition of A as described in ref. [1-2]. The decomposition shows itself as a
powerful framework for analyzing local motions of fluid elements and vortex criteria.

The NND proposed in ref. [1-2] is derived from a canonical form of real matrices discovered earlier by
Murnaghan, Wintner", which is a counterpart over the field of real numbers to the famous Schur form for complex
matrices'”. In that paper, Isaai Schur generalized the previous results restricted to orthogonal” and Hermitian”
matrices. The canonical form of Murnaghan, Wintner" is often referred to as the real Schur form. It is known that
both the complex and real Schur forms of a given matrix are not unique. Actually, the NND is based on a special
real Schur form among the possible variants. However, ref. [1-2] didn’t present a clarification of which variant of
real Schur forms has been chosen and how to maintain uniqueness and consistency throughout the flow fields.

Recently, real and complex Schur forms as well as NND have received increasing attention. For example,
Keylock™* employed the complex Schur form of velocity gradient tensor in their statistical model of fine structures

19 ysed

in turbulence. Das, Girimaji”' analyzed fine structures of turbulence in the framework of NND. Hoffman!
NND to analyze energy stability in incompressible turbulence. Zhu!'"'* derived a real Schur flow (RSF) as the
compressible Taylor-Proudman limit in magnetohydrodynamics, for which the velocity gradient tensor takes a
13

globally uniform real Schur form. Kronborg et al. " applied NND to analyse the shear in blood flows. Arun,

[14

Colonius'* analyze the collision of vortex rings with NND. Just to mention a few.

Apart from the direct application of Schur forms and NND as mentioned above, there are also studies of fluid

motions that are related to or similar in some sense to NND. For example, Kolai'*'"

proposed a triple
decomposition of motion (TDM) of the velocity gradient tensor, which is very similar to the quadruple NND
proposed in ref. [1-2]. Unfortunately, several works, such as ref. [9-10, 13-14], misidentified the tools they used as
TDM, when in fact they were NND.

Kronborg, Hoffman!"” made an effort to clarify the relationship between TDM and the Schur forms. But they
overlooked the gap between the two; especially, they misidentified NND as TDM. Also, they didn’t reveal the
intrinsic gap between the NNDs derived from real and complex Schur forms properly, and treated it merely as an
issue of algorithmic convenience. Besides, they failed to characterize the non-uniqueness of these forms completely
and to present a satisfactory standardization procedure, although they claimed so.

Considering the different types and non-uniqueness of Schur forms as well as the various possible definitions of
NNDs, a clarification of their relationships is in demand, which is the aim of the current article. We hope that this
article will help eliminate the confusion that has existed in previous research and clear the way for further
investigations and applications of Schur forms and NNDs in fluid mechanics and other areas. The readers may also
have an interest in the geometric or kinematical interpretations of Schur forms, which is out of the scope of this

("1 which provides a nice discussion on streamline patterns of real Schur forms.

article. We refer to Zou, Xu, Tang
The structure of the article is as follows. Since NND is based on a real Schur form, we first describe the Schur
forms. In section 1, the general complex Schur form for a 3-by-3 real matrix is derived with a discussion of its non-

uniqueness. In section 2, the general real Schur form for a 3-by-3 real matrix is derived with a discussion of its non-
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uniqueness. A condition of uniqueness and the special real Schur form determined by this condition are proposed. In
section 3, a brief discussion of normal and nilpotent matrices are presented firstly. Based on the general complex
Schur form, a construction of complex NND is presented. Based on the special real Schur form proposed in section
2, several types of real NNDs are proposed. Besides, we also proposed two normal-nonnormal decompositions.
Then, the distinction between the NNDs and the TDM proposed by Kolai''*'” is demonstrated. In section 4, we
demonstrate that it is generally impossible to convert a complex NND into a real NND through unitary

transformations, which implies that the two types of NNDs are nonequivalent.

1 Complex Schur Form

For later use, let’s first restate a classical result about matrices. Let A € C*" be a complex n-by-n matrix. A
theorem of Schur'” says that there is a unitary matrix U such that A = UAU" is upper triangular, i.e., A, ;=0 for all
i > j, and the diagonal entries A;’s are eigenvalues of A. Denote the i-th row of U as u;, then

A=U'AU= ) Aulu;. 2
i<

The eq.(2) is sometimes stated as a theorem and referred to as the representation theorem of matrices.

Theorem 1 Every matrix A € C"™" has a representation as eq.(2) in some orthonormal basis ;.

Indeed, it is an extension of the representation theorem of self-adjoint matrices, which says that every self-
adjoint matrix has a diagonal representation in certain orthonormal basis. An immediate consequence of the
theorem is

Corollary 1 In the representation formula eq.(2), u, is a unit eigenvector of A.

Since u; forms an orthonormal basis of C”, it is easy to see that u,A = A,,u,,, i.e., u, must be a unit eigenvector
of A. Without specification, we always refer to left eigenvectors.

Let A € R¥3 be a real 3-by-3 matrix. It can be the component matrix of a second-order tensor in the basis
aligned with the Cartesian coordinates x,y,z. Since the characteristic polynomial of A is cubic, A always has a real
eigenvalue A3 = A;. Let e, be a unit eigenvector associated with A,. If e; is required to be real, then it has two possible
choices, which are in opposite directions. If it is allowed to be complex, then it can only be determined up to an
arbitrary unitary factor e'?*. Notice that we can always require that e, is a real vector. But we will not make this
choice until necessary.

Fix e,, let u,v € C3 such that

u
U:= (V ) 3
€r
is a unitary matrix. There is
- A T
A= UAU*:(A2 c) (4)
0 A
with submatrices (i.e., blocks)
- i + i
A= (uAuL uAv )’ ot = (uAe_?)’ 5
vAu" vAv' vAe!

where + stands for adjoint (i.e., conjugate transpose). The choices of u,v are not unique. If V, € C**? is a unitary
matrix, then VU with

(V2 0)
V"(o 1

will do the equivalent job as U does, i.e., eliminate the first and second elements of the third row of A. Conversely,

(6)

any unitary transformation on C? that leaves e, unchanged must have the form of V.
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Besides of A3 = A;, A has another two eigenvalues 2;,1, € C, which could be real or a pair of complex conjugate
numbers. They are also eigenvalues of A,. If 1;,1, ¢ R, then A can not be transformed into an upper triangular
matrix by real orthogonal transformations. With unitary transformations, however, A can be converted to an upper
triangular form.

Let

sz(Z), D

with a,b € C? and

8

o

(0 L)
If 22 is upper triangular, then b must be a unit eigenvector of A,. Notice that A, is just the restriction of A in the
subspace orthogonal to e, which is independent of the choice of u,v. Therefore, b only depends on A. Again, b can
only be determined up to an arbitrary unitary factor el*2. a is a unit vector orthogonal to b, i.e., aa’ = 1 and ab’™ =0,
hence a is uniquely determined up to an arbitrary unitary factor .

Being an upper triangular matrix, aA,a’ and bA,b" must be eigenvalues of :12 and A,. But their order is
undetermined. Let’s denote aA,a’ = A; and bA,b" = 1,. There is

A aAybt ac*]

A:=VAV =(f:)2 Vch)z 9

T

0 A b
0 0 A

which is a complex Schur form of A. Notice that the complex Schur form is not unique. Apart from permutations of
diagonal entries, there are also undetermined unitary factors. For all ¢1,¢,,¢3 € [0,27), let

P := diag (e, e!? &%), QD)
Then PVU will do the equivalent job as VU to transform A into its complex Schur form. Hence the general complex

Schur form of A can be written as

A alzei(t/?l—t/’z) a1361(¢1—¢3)
A= 0 Ay a23ei(¢2*¢3) . (1
0 0 A
Notice that only the differences between ¢y, ¢, 5 enter the results. Let ¢35 = ¢1 — ¢3, 23 = ¢ — ¢b3, we obtain
A alzei(¢13*¢23) a136i¢‘3
A= 0 A a23ei¢23]~ (12>

0 0 A3
Since each of a,b, ¢ can be determined up to an arbitrary unitary factor, we can require that any two of ajp,ai3,a;
are real. Let’s assume that a;3,a,3 € R. But in general, a; is complex. Assume that a;, = y+iv with y,v € R.

If 1,4, € R, then the U,V can be chosen as special orthogonal matrices, hence a;, € R. Furthermore, we can set

¢13 = mm, 3 = nm, then

A1 ap(=1)"T a13(—1)m]

A=|o0 Ph an(=1Y" (13)

0 0 A3
This is the real Schur form of A when 1;,4, € R, which is a special case of eq.(12).

2 Real Schur Form

As mentioned at the end of section 1, When A € R¥® has three real eigenvalues, its general real Schur form is a
particular case of its general complex Schur form, given in eq.(13). When A has a pair of complex conjugate
eigenvalues, it can not be transformed into an upper triangular matrix in the field of real numbers. In this case, we

can only have a block upper triangular matrix in the form of A obtained in section 1. Especially, we can require that
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A is real by restricting U to orthogonal matrices. It gives as the general real Schur form of A with a pair of complex
conjugate eigenvalues. But this leaves us one degree of freedom, which is the rotation in the subspace normal to e;.

Therefore, an orthogonal transform can be applied to A to meet one more requirement. Let

cosp sinp O
Q=(—sing cos o OJ, 4>
0 0 1
then
A:=QAQ" = (15)
Ay1cos?o+ Ay sin o+ Apcos?o— Ay sin29+

N B ) - N €1COS 0+ cpsin o
(A2 +Aj)cos osin o (A —Ajqi)cos psinp

Ascos?p—Apsinfo+  Axmcos’o+A; sin®o- e (16)
~ ~ - N crcos 0—cysinp
(A —Ajp)cos psin o (A2 +Aj)cos psinp

0 0 Ar
We require that Ay = Ay, hence
(A1) —A5)(cos? 0 —sin? 0) +2(A15 + Ay ) cos psin o = 0, (17
which implies that
tan(2g)=w. (18)
Ap+Ay

Since the period of tan is m, there are four values of o € [0,2r) that satisfy the equation. They determine two

lines that are orthogonal to each other. We can also obtain
Ap—Ay

1 Ap+A
coszg:—(liu), sinpcosp =+ = (19>
2 |As] 2|A,|
where
(Aol = IASl ~2det Az = \[(App + Ao + (K~ A1 20)

is invariant under unitary transformations, hence the components of A in its expression can be replaced by those of
A. With these values of o, we have
_Ap+Ay _ A — Ay =14,

Ay=Ap=—"-—-"= A , Q2D
11 2 > 12 >
R Ay —Apx|A
y = An—An | 2|. (22)
2
Therefore,
Ay +Axn An-Ay £|Ay
> > 13
A=Ay —Ap£|Ay A +Ap L (23)
> > A
0 0 Ar
Denote
xi=An =4y, wyi=An-Ay, yi=An+Ay = £lA (24)
The 2-by-2 diagonal block of A can be written as
Yt ws
Ari=|y o, (25
2

We have mentioned that e, has two possible choices, which are in opposite directions. If w3 < 0, rotate the basis

about the %-axis for an angle of n. The operation change the signs of w3 and y simultaneously. Therefore, the choice
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of e, is uniquely determined by requiring w3 > 0. We have also mentioned that o has four possible choices, which
determine two lines that are orthogonal to each other. If y <0, rotate the basis about the Z-axis for an angle of /2.
This operation changes the sign of v while keeping the sign of w;. Therefore, the choice of o is reduced to two
opposite directions by requiring y > 0. Denote
Az =B, Ay :=a. (26)
The two choices of o lead to different signs of @ and B8 simultaneously. Therefore, the choice of o can be
uniquely determined by assigning a sign for a or 8. We require that @ > 0. According to the discussions above, in the

generic case that all of ws,y, are nonzero,
Ytws

A=|y—-w3 Q7
X 04
2
0 0 A

can be uniquely determined by requiring
w3 >0,y>0,a>0. (28)
Of course, this uniqueness condition is not the only choice. For example, one can require w3 < 0 instead. But
that only affects the appearance of the resulting standard matrix form and is merely a matter of convention. If some

17 also noticed

of ws,y,a is zero, then the form of A can be nonunique. We should mention that Kronborg, Hoffman
the nonuniqueness of Schur forms, but their consideration is restricted to a permutation of basis vectors, which is not
essential to the forms and the construction of NNDs.

When A has a pair of complex conjugate eigenvalues A, = A +idg, €q.(27) is a special form of the real Schur

forms of A. In this case, there is

1
Aer = X, /lcizi w§_72~ 29

We should emphasize that when A has three real eigenvalues, the form of A is still uniquely determined by the
above procedure. In other words, A is a unique canonical form of A even when A has three real eigenvalues. But in

this case, it is not a real Schur form of A. In this case,

1
A2 =Xi§1/)/2—w2. (300

Remark 1 Ineq.(27), notice that
4A1nAy =y - w3 3D
is the discriminant of the characteristic polynomial of A,. It can be used to determine whether A has a pair of
complex conjugate eigenvalues.
Remark 2 Since A = (QU)A(QU)", Q is a rotation matrix and U can be chosen as a rotation matrix, therefore,

the six nonzero components y,ws, A, a,B,y of A are rotational invariants of A.

3 Normal-Nilpotent Decomposition

3.1 General Discussions

A matrix A € C™" is said to be normal if AAT = ATA. A is normal if its complex Schur form is diagonal or its
real Schur form is block diagonal. A is said to be nilpotent if A” = 0. A is nilpotent if it only has zero eigenvalues, if
its Schur form is strictly upper triangular. Thus we can conclude that if A is both normal and nilpotent, then A = 0.
Therefore, it is very natural to decompose A as a sum of a normal matrix and a nilpotent matrix by splitting the
diagonal and off-diagonal parts of its complex Schur forms or splitting block diagonal and off-diagonal parts of its
real Schur forms. However, the splitting approach is not the only way to realize such a decomposition. Actually,

there may be more than one such decomposition for each Schur form of A. Furthermore, considering the non-
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uniqueness of Schur forms, based on each variant of complex or real Schur forms of A, such a decomposition can be
constructed. All of them can be called normal-nilpotent decompositions (NNDs).
There is another set of necessary and sufficient conditions for normal matrices, which may serve as guidance
when constructing NNDs. Let
A+AT A-Af
S = — W= B (32)
Then A=S+W and ST =S,W' = —W. It is evident that A is normal if SW = WS. In the orthonormal basis composed

of eigenvectors of S, suppose

st 0 O 0 w3 —Wwp
S:(O S2 0],W=[—W3 0 w1 ] (33)
0 0 53 11%) —Wi 0
Then
0 wi(s1 —s2)  walsz—s1)
SW-WS = W3(S1 —Sz) 0 W1(S2—S3) s (34)
wa(s3—s1) wi(s2—s3) 0

which leads to the following

Theorem 2 The matrix A € C> is normal only in one of the following three cases:

1) All sy, 57, 55 are distinct, w; = w, = w3 = 0. In this case, A is symmetric.

2) s; = s # s for distinct i, j,k, w; = w; = 0. In this case, A is quasiorthogonal.@

3) 51 =5, = s3. Thatis S = (tr A/3)1.

Notice that the validity of these conditions does not depend on the diagonal form of S since normality and
nilpotency are independent of unitary transformations. But the s;’s and w;’s refer to the matrix entries in the basis of
eigenvectors of S. This also justifies the procedure of constructing NND in the basis of Schur forms since they are
generalizations of the basis of eigenvectors of self-adjoint matrices, as stated by the representation theorem eq.(2).
3.2 Complex NND

Let A be the diagonal part of A given in eq.(12) and A be the off-diagonal part. That is

. (4 0 0y _ (0 ape @) g zeitn
A:{O A O),Az{o 0 are? |- (35)
0 0 2 0 0 0

Then we have A = A + 4. Obviously, A is normal and A is nilpotent. In the generic case, all 1, 4,, 43 are distinct
from each other. In the same sprite of the case 1 of theorem 2, the normal part should contains no off-diagonal
entries. In particular, we can not add an anti-symmetric matrix to A. Besides, we can not add a symmetric matrix to
A either, otherwise it will violate the nilpotency of A. Hence the above construction of NND is the only natural one
in this case. Of course, the decomposition is complex, and A is not unique. When A has three real eigenvalues, Alis
real and we can make A real too, as shown by eq.(13). When A has a pair of complex conjugate eigenvalues, A can
be converted to a real matrix through a unitary transformation, but A can not be converted to a real matrix by the
same unitary transformation. The details are presented in section 4.

The NND used by Keylock"™ is of this type. It has several advantages, such as

1) The Schur form has a simple upper triangular form with eigenvalues on its diagonal.

2) There is only one natural way of decomposing the Schur form into the sum of a normal part and a

nilpotent part.

(D A matrix is said to be quasiorthogonal if its columns are mutually orthogonal and so are its rows. But the columns and rows are not
required to be normalized to unit length. The accurate name for this class of matrices should be orthogonal, unfortunately, which has

been widely accepted for matrices that should have been called orthonormal matrices.
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3) The normal part and the nilpotent part have no overlap, resulting in a clean decomposition.

4) The cases of real and complex conjugate eigenvalues are treated in a unified way.

As a mathematical model of physical quantities such as the velocity gradient tensor, the complex NND is
adequate. However, the physical interpretation of the complex matrices is not clear yet. In contrast, real NNDs can
have a much clearer physical meaning, as demonstrated in the literature.

3.3 Real NND

In Li'", the real NND of A with three eigenvalues is a special case of the complex NND as constructed above.
When A has a pair of complex conjugate eigenvalues, the real NND is constructed based on the special real Schur
form eq.(27). However, in both the real and complex eigenvalue cases, those are not the only ways to construct real
NNDs.

Let’s consider the case of complex eigenvalues first. Since the special real Schur form eq.(27) has two identical
diagonal entries, the normal part of A corresponds to the case 2 of theorem 2. In particular, the normal part of A can
only have off-diagonal entries in the positions of 12 and 21. We have three natural ways to decompose the off-
diagonal part of the submatrix A,, which are:

1) Quasiorthogonal-nilpotent;

2) Symmetric-nilpotent;

3) Symmetric-antisymmetric.

Each type of decomposition above leads to a type of decomposition of A. Since both symmetric and

antisymmetric matrices are normal, the first two ways of decomposition belong to NND and the third does not.

Denote
w3ty w3~y
- = ) (36)
¢ 2 v 2
The decomposition
A=N+T (37)

can be realized in the following ways.
3.3.1 Quasiorthogonal-Nilpotent Decomposition

The normal component N contains the diagonal of A and the anti-symmetric part of A,, hence is orthogonal.
There are two natural ways to separate an anti-symmetric part from A,, which leads to two variants of NND: the one
minimizes ||N||r, the other maximizes ||N||z. The ||[['|| in the two approaches are the same. In both cases, N is normal
and [ is nilpotent.

(a) Minimize the normal part:

x ¢ 0 0 vy B

- x 0], f:z(o 0 a]. (38)
0 0 A 0 0 O

N:=

In this case, ||N|| is minimized because |y — w3| <y + ws. This variant of NND is the one proposed in ref. [1].

(b) Maximize the normal part:

(X ¢ 0y 0 0 B
N:=[-¢ x 0], F:=[7 0 a]. (39
0 0 A 0 0 O

In this case, ||N||» is maximized because the off-diagonal entry of A, with a larger absolute value is kept in N.
3.3.2 Symmetric-Nilpotent Decomposition
The normal component N contains the diagonal of A and the symmetric part of A,. Similarly, there are two

natural ways to separate a symmetric part from A,, which leads to two variants of NND:
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(a) Minimize the normal part:

(x ¥ 0y 0 ws B
N=|l-v ¥ 0 ,F::(o 0 a/]. (40)
0 0 2 0 0 O
(b) Maximize the normal part:
(x4 0y (0 0 B
N:=[¢ x O ,F:=(—w3 0 a]. 4
0 0 A 0 0 O

3.3.3 Normal-Nonnormal Decompositions
The N contains the diagonal of A and the symmetric part or antisymmetric part of A,. In both cases, N is
normal but " is generally not nilpotent. Hence the resulting decompositions of A are not NNDs.

(a) Symmetric-nonnormal:
Y w3

200 X3
X o5 0 - B
N:=|Y = ws . (42)
z ol _Ys
2 X , 0@
0 0 A 0 0 0
(b) Quasiorthogonal-nonnormal:
s yo_
x - 0 0 5 -8
N:=|_ws r=\v (43)
B ol Y
2 ¥ ; Vo«
0 0 A 0 0 O

Remark 3 When A has three real eigenvalues, eq.(27) is not a real Schur form of A, but it is still a uniquely

determined canonical form of A. In this case,
A1+ 4

5 (44

X:

and |y|=|ws|, hence ¢y<0. The decompositions constructed above based on the canonical form eq.(27) extends to this
case.

Remark 4 Koldi"*'" defined a triple decomposition of motion (TDM) earlier than NND of Li"", but the two
decompositions have very similar appearances, which has caused some confusion. Here we point out several
distinctions between the two:

1) The purely asymmetric tensor in ref. [15-16], defined by the vanishing of the product of each pair of off-

diagonal entries, is generally not nilpotent. For example, the matrix

0y O
[2 0 a] (45)
0 0

is purely asymmetric according to ref. [15-16], but its determinant is nonzero, indicating nonzero eigenvalues. Hence
it is not nilpotent. Of course, the purely asymmetric tensor can be nilpotent in several special cases, especially in the
2D case. But the concept behind it is different from the nilpotent tensor. Actually, a condition of nilpotency can be
phrased as a given n-by-n matrix is nilpotent if among any »n entries that occupy n rows and n columns, there is a
Zero.

2) TDM maximizes the norm of the purely asymmetric tensor through changing of basis, while the NNDs do
not maximize the nilpotent tensor, neither do they choose basis according to optimization principles.

3) Regardless of the difference in their choice of basis, TDM and NND produce different results. For example,
suppose the basic reference frame (BRF) of ref. [15-16] is the same as the basis of the special real Schur form

eqg.(27). When A has complex conjugate eigenvalues, its TDM coincides with eq.(38); but when A has three real



CACR Z5E: Schur B 5 IEM-E 0 1209

eigenvalues, its TDM coincides with eq.(40) instead. Of course, we can define a new type of NND by combining
eq.(38) and eq.(40) in each case to include the results of TDM, but it is somewhat artificial and we don’t know

whether this is always the case.

4 Gap Between Complex and Real NNDs

In this section, we show that it is generally impossible to transform a complex NND into a real NND. Consider
the general complex Schur form eq.(12). Its complex NND is just the splitting of the diagonal and off-diagonal parts,
as given by eq.(35). Let’s find a unitary transformation that converts it to a real NND. Since A3 = A, is real, the
required unitary transformation should leave e, unchanged, hence is essentially a unitary transformation in the
subspace normal to e;.

Denote

Ay :=diag (11, 1), (46)
where ;5 = A £14,; s a pair of complex conjugate numbers. We are seeking a unitary transformation that converts

A, into a real matrix. Let

I (i 1
R, := —( ) 7
: V2Vl -
It can be verified that R, is unitary and
o T Aer A
Nai=RaoRY = (2509, (48)
which is real. Of course, to transform A, into a real matrix, the choice of R, is not unique. For every real orthogonal
matrix
cosf  sin 9) (
= i 49)
2 (— sinf cos 6
0, R, will also do the job. Let
R, 0) (Q2 0)
R = = 50
( 0o 1/ ¢ 0o 1/’ (50
and A be the general complex Schur form eq.(12), then
z = i
A:=QRAQR =M 4 (51)
0 A
where
Aep — ~ap,ei@0ri—0m) 4 lalzeiaew]s—m)
M= 21 2 (52)
A+ mape @ en=en) 34 Lo ciQ0ve-02)
2 2
and
i . 1 . 1 . i .
d:= (_al3el(9+¢13) + _a23el(9*¢23), _aBe*I(9+¢I3) + _a23el(9*¢z3) . (53)
V2 V2 V2

w

That’s all we can do. Now we need to determine ¢;3,$,3 and 8 such that A is real. We rewrite M = N, + &L,
1 )
where £ := Ea12(31(2(7‘*1?513—%3) and

L, :=(‘1i 1) (54)

However, whatever ¢13, ¢»3 and 6 are chosen, M can never be real, so can A. Therefore, a complex NND
can not be converted into a real NND by unitary transformations in general. They are intrinsically distinct

decompositions.



1210 MO % % M h 2024 4F 55 45 %

5 Conclusions and Discussions

The major contributions of this article are:

1) The general complex and real Schur forms are derived constructively, with special consideration for their
non-uniqueness. Conditions of uniqueness are found to obtain standardized Schur forms.

2) Conditions for normality and nilpotency are presented. Based on the general complex Schur form, a complex
NND is constructed. Based on a special real Schur form, several real NND as well as normal-nonnormal
decompositions are constructed. A comparison of advantages and disadvantages between complex and real NNDs is
presented.

3) Several confusing points are explained, including the distinction between NND and the TDM proposed by
Kolai!'"*'! the intrinsic gap between complex and real NNDs.

We hope that the objective of the article, i.e., clarifying the confusion about Schur forms and NNDs existing in
research, has been achieved.

Now the open question is, provided so many versions of decompositions, which is the right one to use?
Typically, there are two widely adopted usages:

1) Use complex Schur form and complex NND throughout.

2) Use the special block real Schur form eq.(27) and correspongding NND when A has complex conjugate
eigenvalues; use the real Schur form eq.(13) and the corresponding NND when A has three real eigenvalues.

But now one has an additional option: use the special block real Schur form eq.(27) and the corresponding
NND throughout, i.e., for both real and complex eigenvalue cases. Of course, the above description didn’t take into
account the different variants of real NNDs as proposed in section 3, which provides even more options. These

options will serve different needs.
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