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Effects of Surface Stresses on Contact Problems
of an Elastic Half Plane With a Circular Cavity "
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Abstract: In view of the importance of surface stress in controlling mechanical responses of
nanoscale structures, the effects of surface stresses on the elastic field around a circular hole in
an elastic half plane were analyzed. The complex variable function method was adopted to de-
rive the fundamental solution to the contact problem. The deformation caused by the uniformly
distributed traction on the plane surface and the surface stress along the cavity boundary was
analyzed in detail. The results reveal strong size-dependence of the stress field and the surface
deformation on the surface stress, and the surface displacement directly above the circular hole

is a function of the surface stress.
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Introduction

The study of the mechanical behavior of inhomogeneous materials containing nanos-
ized inclusions or holes has attracted great interest in the fields of material science, solid
state physics and nanomechanics. Due to the large ratio of surface area to volume in nano-
composites, the surface effects need to be taken into account. For the increasing applica-
tions of nanostructured materials, researchers recently have considered the effects of sur-
face energy on the deformation field of elastic materials containing nanoinclusions or nano-
holes according to the theory of surface elasticity' ™.

Based on the classical theory of elasticity, the deformation of an elastic semi-infinite
plane containing heterogeneous structures has been well studied. However, the corre-
sponding solution for nanosized inhomogeneities is still absent up to now. Sharma et al."”’
analyzed the size-dependent elastic stresses of nano-inhomogeneities by surface elasticity
theory. Sharma and Ganti''®' formulated the size-dependent Eshelby tensor for nanoinclu-
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sions with surface energy. Jammes et al.''"" used a semi-analytical method to solve the
problem of a half-plane, which contains, circular nanoinclusions. Zhao and Rajapaske''’
derived the fundamental solution of an elastic layer bonded to a rigid substrate with surface
effects. In these papers, the Fourier integral transform was used to solve the non-classical
boundary value problems with surface effects. However, none of them examined the
effects of surface stresses on the deformation of an elastic half plane containing an inhomo-
geneity and subjected to external loadings on the surface of the half plane and along the
cavity boundary.

The purpose of this paper is to analyze the effects of surface stresses on the deforma-
tion of an elastic half plane containing a circular hole near the free surface. A uniformly
distributed loading is applied over an area of the free surface, and a surface tension is
specified along the cavity boundary. The Fourier integral transform method, the complex
variable function method and the superposition principle are used here to solve the deform-
ation field.

1 Mathematical formulation

Consider a semi-infinite, isotropic elastic half plane as is shown in fig. 1. We refer to
Cartesian coordinate system O-xy , where x -axis is along the free surface, and y -axis per-
pendicular to the free surface. The elastic half plane occupies the region of y < 0, and is

subjected to a uniform loading P on the free surface of the half plane.
y
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Fig. 1 The half plane with a circular cavity

The elastic half plane contains a circular hole of radius r , and the surface tension a-
long the cavity boundary is 7. The distance from the hole centre to the free surface of the
elastic half plane is i ; and loading P is applied on the free surface of the elastic half plane
within the range of — b < x < b . The shear modulus and Poisson’ s ratio of the elastic half-
plane are u and v , respectively. The surface energy is 7.

1.1  Surface stress formulation

Owing to the large ratio of surface area to volume, the surface stress plays a key role
in the stress field near the nanosized objects. Based on the surface elasticity theory, the e-
quilibrium and the isotropic constitutive relations are

o;; =0, (1)
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where o; and ¢; are the stress tensor and strain tensor of the half plane, respectively.
Throughout the paper, Einstein’ s summation convention is adopted for all repeated Latin
indices (1, 2, 3) and Greek indices (1, 2). The strain tensor is related to the displacement
vector u; by
‘9121':%(“#./ ) (3)
Assume that the surface of the material adheres perfectly to its bulk without slipping.
Then the equilibrium conditions on the surface are expressed as
Tpllg + Opp =0, (4)
TN, = O oK, (5)
where n, denotes the normal to the surface, «,, is the curvature tensor of the surface, and
0. is the surface stress tensor. The surface stress tensor as a function of surface energy
can be expressed as
. a7,
Thp = Tdp +@. (6)
The last term in eq. (6) demonstrates a variation of the surface energy density with re-
spect to elastic strain, which is related to the stretch or compression of the surface atoms
to accommodate to the bulk phase. If the change of the atomic spacing in deformation is
infinitesimal, the contribution from the 2nd term to the surface stresses is negligibly small
compared to the residual surface tension. In what follows, for simplicity, we neglect the

contribution from the 2nd term in eq. (6). Then, the surface stresses are given by

Top = ToO (7)
The boundary conditions on the free surface y = 0 are simplified to
o, =0, (8)
To
_P_O-”:]Tx)’ (9)

where R(x) is the curvature radius of the deformed surface.
1.2 Application of the complex variable method

With the complex variable method ( Muskhelishvili'*®' ), the elastic solution can be ex-
pressed in terms of 2 functions of ¢(z) and (z) , which are analytic in region R shown in

fig. 1. The stress and the displacement components as functions of ¢ (z) and s (z) are

o, +0,=21¢'(z) +¢'(2) }, (10)
o, -0, + 20, =21z¢"(z) +¢'(2) ], (11)
2u(u, +iu,) = kdp(z2) —z2¢'(2) —¢(2), (12)

where z = x + iy is the complex coordinate variable, k = 3 — 4 is for the plane strain and «
= (3 -v)(1 +v) for the plane stress.

It’ s convenient to express the boundary condition of the cavity in terms of the integral
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of surface traction along the boundary
F(s)=F, +iF, =i [ (1, +it))ds, (13)
.YO

where s, is an arbitrary point of the cavity boundary, and ¢ , ¢ are the horizontal and verti-

cal tractions, respectively. Thus the cavity boundary condition is

F,o+iF, ==i[¢(2) +2¢'(z) +¢(2)] + C, (14)

where F(s) is a given function of the coordinates along the cavity boundary, and C is an in-

tegration constant.
1.3 Conformal mapping

Region R in z-plane can be mapped conformally onto a ring in &é-plane with ¢ = 1 as the
outer surface ( standing for the transformed surface of the elastic half plane) and ¢ =a(a <
1) as the inner boundary of the ring ( standing for the transformed surface of the circular

hole) , as is shown in fig. 2.

Fig. 2 The half plane by conformal transformation
With the conformal mapping method, 3 pointsz, =0, z, == (h —=r)i, z; == (h +r)iin
z-plane can be mapped to 3 points ¢, =1, &, = ai, & =— aiin é-plane by
Z27Z 2z T _f‘fl . & — &
2 T2 . 33 T & _f_fz ‘ & _52.
Thus the proper conformal mapping is
1 +¢&
ﬂ’

where m =h(1 -a*)/(1 +a’). The governing geometrical parameter is the ratio of the radi-

(15)

(16)

z=w(&)=—1im

us to the depth of the hole, which is expressed as

r 20
;=]+a2. (17)

Transformation function w(z) is analytic in the ring bounded by circles| £l =1 and | &1 =
a. Thus, functions ¢(z) and ¢(z) become ones of ¢ as
d(2) =d(w(&)) =P(E), (18)
P(2) =g (w(§)) = ¥(E). (19)
This means that they can be represented by the Laurent series expansion.
1.4 Principle of superposition
The problem can be solved with 2 problems denoted by I and Il below according to
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the principle of superposition'*'. Superscripts [ and II refer to the field variables associat-
ed with the solutions to problems I and II , respectively.
T, —a'I +0'L]/1, (20)
uiZuiI +ul.. (21)
1.4.1 Problem [ : a homogeneous half plane under a distributed surface pressure
In case [ , uniform distributed pressure P acts over region | x| < b. We can obtain the

stresses'” as

O'i(x,y)_i (ifg-'_ ljSiH(gbf) cos(xl) e dL, (22)
(T),'}.(x,y) —_ g 0 (sg-:.ygj sin(gbg) cos(xl)e™de, (23)
~ g sin(bl) sin(«l) >
O'H(x,y> - 0 (SZ + l) Z }/ge dg, (24’)
where s = 7,(1 — v)/u. The corresponding displacements are expressed as
! =— “y7§+21/— in in %
u (x,y)—m 0 L+ DE sin(bf)sin(xf)e™dl + C,, (25)
w' (x,y) = qf;f: Wsin(b{)cos(x{)e_}‘rdg + C,. (26)
On free surface y = 0, the stresses and displacements are given by
U_i(x,O) = I(x 0)=- 2P sm(t)( t+ 1) _ cos( )dt (27)
m™ Jo t b b
_ P(1-2v)b (= sin(t) (s -
u! (2,0) == fo . (b”lj sln(b ]dt (28)

: _2P(1 = w)b = sin(t) B x ) (ro
w (x,0) = - ‘[o 2 (b +1J [cos(btj cos[btj}dt. (29)

1.4.2 Problem II . a circular hole embedded in the elastic half plane under a
uniform radial stress of magnitude 7 on the cavity boundary
To solve problem II , the proper complex potential based on the Laurent series is in-

troduced as
H=¢W@=Z%€+Zm$, (30)

W@—Z¢+Zd@ (31)

where a, ,b, ,c, ,d, are coeff1c1ents to be determined.
Stress functions ¢(£¢) and ¢ (¢) can be easily found to be

o) 2<1+a>+2@+2?2

(32)

== 3i(1 +a’) +2ia’¢ +iE + — +

b ! (f) . . . 2i  id?
— 33
L é_‘ 62 ’ ( )

where
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oa’Th
L= .
(1 -a*)(1-a")
Substituting eq. (16) into eq. (32) and (33), we obtain stress functions ¢"(z) and
(//H (z) in z-plane as

4zhAB? h2AB
I _ .
= e Y g (34)
8zh°AB* 52°A% + hPB* + 6°h*A’B?
1 _ .
g (z) =1+ 1 ) L-iA iy L. (35)

Substituting eq. (34) and (35) into eq. (10), (11) and (12), and giveny =0, the sur-
face stresses are simplified to

1
0. (x,0 A - BB’ 3%°A* - BB’
»(L) = 8hAB? W + 8h AR W, (36)
z + z + i
1
U(x’o) 32h2AZBZ_ 4A4+ 2A2_h232 hZBZ_3 2A2
T gpapt ( zAf thﬁ)z + 8h°A°B* (W—thW. (37)
X + x +
The corresponding displacements are expressed as
u"(x,0) (kh +2h — 1)R’B* + (kh + 1)x%A?
———— =-4x s (38)
(A-1)Th (A + h*B*)?
w'(x,0) B
(A-1)Th
(2 +3B" —4A)x"A’B* + (3B* + A = 5)h* = (FA’B7 = h*)* + 8xh?A°
(.szz +h232)2
4kh’B* (A - 1)
S (39)

A% + BB
whereA =1+ o>, B=1 - o’.

2 Numerical calculation

It is instructive to examine the effects of the surface stresses on the stresses or dis-
placements on the free surface and compare them with those out of the classical elasticity
theory. In what follows, we set P =T, u=14.5GPa'"" | v =0.4, 7,=0.1J/m’, h/r = 1.5 and
b/r =3.

As is shown in eq. (27), the values of o, and o depend on parameter s/b . Thus the
stresses obtained from the superposition of eq. (27), (36) and (37) are functions of the
size of the circular hole and the surface stresses on the half plane, where we set x/r = 1.

According to Wang and Feng"’' | the absolute values of s/b for metals are about 0.0 to
2.0, where solution s/b = 0 is consistent with the classical elastic results. When loading size
b is comparable to parameter s , i.e., of the order of nanometers, the effects of surface
stresses will be prominent. It is also found from fig. 3 and fig. 4 that the normal and tangen-
tial stresses change smoothly, which is different from the 2 lower stresses predicted by the
classical elasticity theory. In addition, the normal stress goes up after a rapid decline,
while the tangential stress goes down slowly after a rapidly decline around r = 0.2.
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Fig. 5 and fig. 6 show the various stresses on the surfaces for s/b =1 with different co-
ordinates in the half plane. It can be seen that the stresses drastically declines with r when
r is small enough. In fig. 5, the normal stress changes gently with r around r = 0.2, while the

tangential stress reduces slowly around r = 0.3.
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Fig. 7 shows the normal displacements for 2 different values of s/b. We can see that
they both decline linearly with r. The result from the classical elasticity theory is only

slightly lower than that from the nanosized one.
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Fig. 8 compares the normal displacements for different coordinates on the free surface.

It can be seen that the displacements decrease linearly with r , and the slope of the de-

formed surface fors > 0 is continuous everywhere.

3 Summary

Based on the theory of surface elasticity and the complex variable method, the effects

of surface stresses on the deformation of an elastic half plane containing a circular hole

were analyzed, as the nanosized surface of the elastic half plane was subjected to a surface

loading. It is found that the surface elasticity theory illuminates some interesting character-

istics of contact problems at the nanoscale, which are distinctly different from those of the

classical solutions. Therefore, for nanosized contact problems of half planes with cavities,

the effects of surface stresses should be carefully considered.
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